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SECTION 1

INTRODUC-'ION

With the increased application of fiber-reinforced, resin-matrix composite

materials in aircraft structure, the need for effective repair materials and procedures has

led to a great deal of activity over the past 5-10 years. Some of this has focused on the

development of equipment and procedures for repair while others have resulted in the

development of new materials for use in repair.

Because of limitations in available equipment and the need for rapid turnaround

in field repair scenarios, the techniques and materials used in repair differ from those
employed in original construction. These considerations imposed a number of

constraints on both the materials and procedures employed in this program. Some of
these include, but are not limited to, the following:

* The material should have a long storage life at ambient temperatures ranging
up to 120"F. This generally precludes the use of prepreg material and leads to
two-part resin systems.

* The material should be curable at temperatures below the boiling point of
water. This is desired so that any residual moisture absorbed in the substrate
to which the repair is being applied does not catastrophically volatilize during
cure and cause blistering, debonding, or excessive bondline porosity.

* The material should have a reasonably long pot life (approximately 1 hour)
while being curable in a relatively short period (1 hour or less).

* The material should not lose a large proportion of its mechanical strength
under hot/wet conditions.

a Only vacuum pressure will be available to provide compaction during cure.

An initial series of materials screening tests were carried out on several candidate

materials that were identified by a review of vendor literature and direct vendor contact.
The result of that screening test effort was a selection of one material for more
comprehensive characterization. The investigation reported here dealt with the

characterization of that material. The goal of this work was to develop a mecharical and
physical property database for EA9396 glass and graphite fabricate laminates that would

enable aircraft repairs to be designed using these materials.



SECTION 2

APPROACH

The materials used during this investigation are described in Section 2.1. Section
2.2 discusses and describes the mechanical and physical test methods that were employed

and the experimental design that was followed. Section 2.3 discusses the processing

procedures employed to fabricate both the baseline laminates, which represented the bulk

of the panels, as well as those fabricated by procedures that varied from the baseline

process.

2.1 MATERIALS

The principal material of interest in the investigation reported here was a wet-

layup epoxy resin manufactured by Dexter-Hysol designated EA9396. This is an
unfilled, low viscosity, two-part system. It was obtained in both gallon and quart kit

forms directly from Dexter-Hysol. Three different batches of EA9396, produced in
August, September and October of 1988, respectively, were supplied. The baseline

property measurements (to be discussed in Section 2.2) employed all three of these resin

batches in order to generate batch-to-batch comparisons. In addition to the baseline

properties, many supplemental tests were also performed to assess the effects of various

processing, reinforcement, and environmental variables on resulting properties. Batch-

to-batch comparisons were not generated for these supplemental tests. Rather, these tests

employed resin from only one of the three batches.

Laminate mechanical properties were generated for both glass and graphite fabric
reinforced composite panels. The specific types of fabric used in these laminates are

detailed in Table 1. Both of these were balanced 8-harness satin (8HS) style fabrics.

The ply orientation of each laminate was such that the warp yarns of every ply ran in the

same direction. Since 8HS fabric has a "top" side that consists of predominantly one

yarn dihection, and a "bottom" side that consists predominantly of the perpendicular yarn

direction, the up/down orientation of the plies was reversed at the laminate midplane so

that all plies above the midplane were oriented in the "up" direction while all plies below

the midplane were oriented "down." In the data tables to follow in this report the "warp"

direction is synonymous with the longitudinal or 00 direction, while the "fill" direction is

synonymous with the transverse or 90' direction.
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TABLE 1

GLASS AND GRAPHITE FABRIC REINFORCEMEN DESCRIPTION

Characteristic Glass Fabric Graphite Fabric

Fiber Type E-Glass Toray T300, 3K

Fiber Sizing F-16 (Volan-A- type) UC 309 (epoxy
538 (Silane type) compatible)

Weave Style 7781 W! 33 (8HS)
Fabric Width 100 cm (39.5 in) 107 cm (42 in)
Fabric Weight 295 gm/r 2 (8.7 oz/yd 2 ) 366 gm/rn 2 (10.8 oz/yd 2 )

Nominal Cured Ply
Thickness 0.2 mm (0.008 in) 0.37 mm (0.0145 in)

Fiber Specific Gravity 2.54 1.78

Nominal Fiber Properties
Tensile Strength 3445 MPa (500 Ksi) 3734 MPa (542 Ksi)
Young's Modulus 72 GPa (10.5 Msi) 235 GPa (34.1 Msi)

Elongation 4.8% 1.6%

Source Hexcel (1) ICI Fiberite
Burlington (2)

(1) F-16 (Volan-A) sized fabric.
(2) 538 (Silane) sized fabric.
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2.2 EXPERIMENTAL DESIGN

Seven different properties were measured on all three resin batches. These are

referred to here as the baseline property measurements. Six of these seven were

mechanical properties and the seventh was glass transition temperature. Table 2 lists the

test matrix and test methods used for the baseline property measurements. This test

matrix was repeated for both the glass and graphite fabric reinforcement and for each of

the three resin batches. The glass transition tests were performed on unreinforced neat

resin samples.

The baseline material properties derived from the test matrix presented in Table 2

provide a comprehensive database for repair design purposes. It incorporates the effects

of different batches, reinforcement type, temperature, and dry-wet variables. The

material properties generated from this test matrix represent the basic design needs.

In addition to the baseline properties listed in Table 2, numerous other

supplemental tests were carried out to determine the effect of various processing and

environmental variables on resulting properties. Only one batch of resin was used for

these tests, and the results were compared to the baseline values, where appropriate, to

assess the effect of the respective processing or environmental condition. Table 3 lists

these supplemental, nonbaseline tests.

2.3 TEST METHODS

Nearly all of the testing conducted during this effort was performed in accordance

with standard ASTM test procedures. The specific ASTM methods employed are listed

in Tables 2 and 3 and are not discussed further here. The remainder of the tests were also

performed in accordance with generally accepted laboratory procedures. Since, however,

these are not as readily referenced as ASTM procedures, each of these non-ASTM

procedures is briefly discussed in the following sections.

All specimens that were tested at other than room temperature in the dry

condition were allowed to equilibrate for 20 minutes before loading was started. In order
to minimize specimen dryout, testing of moisture conditioned specimens was started

4 minutes after the specimen wa.; installed in the test fixture and the chamber door

closed.
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TABLE 3

SUMMARY OF SUPPLEMENTAL TESTS TO DETERMINE
SPECIFIC MATERIALS PROPERTIES AND THE

EFFECTS OF PROCESSING AND ENVIRONMENTAL
VARIABLES ON PROPERTIES (1)

Variable of Concern Type of Tests Conducted Method

Effect of Maximum Cure DSC (2)
Temperature on Degree of
Cure

Cure Time and Interlaminar Shear Four-Point Shear (5)
Temperature

Cure Pressure Laminate Physical ASTM D3171, D792,
Properties and Interlaminar D2584, D2734, Four-Point
Shear Shear (5)

Bearing Strength MIL-HDBK-17B Bearing MIL-HDBK-17B

Strength

Effect of 350'F Exposure Interlaminar Shear Four-Point Shear (5)

Effect of Resin Content Interlaminar Shear and Four-Point Shear (5)
Compression ASTM D3410B

Effect of Storage Time and Interlaminar Shear Four-Point Shear (5)
Temperature Viscosity ASTM D2393

Viscosity Curing Profile Rheometrics RSA II
DSC (2)
FTIR (3)
HPLC (4) ---

Effect of Temperature on Manual/Visual Assessment N.A.
Pot Life

Effect of Adhesive Fillet Flatwise Tension ASTM D297
Size on Honeycomb
Sandwich
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TABLE 3 (Concluded)

SUMMARY OF SUPPLEMENTAL TESTS TO DETERMINE
SPECIFIC MATERIALS PROPERTIES AND THE

EFFECTS OF PROCESSING AND ENVIRONMENTAL
VARIABLES ON PROPERTIES (1)

Variable of Concern Type of Tests Conducted Test Method

Effect of Skin Processing Edgewise Compression ASTM C364
Technique on Honeycomb
Sandwich

Effect of Thermal Flash Compression ASTM D3410B

Effect of Alternate Physical Properties ASTM D792, D3171,
Impregnation and Bagging D2584, D2734
Schemes

Effect of Al 100 Sizing on Tension ASTM D3039
Wet-Strength Retention Inplane Shear ASTM D3518

Interlaminar Shear Four-Point Shear (5)

NOTES:

(1) Only one resin batch used for these tests.
(2) Dynamic Scanning Calorimetry.
(3) Fourier Transform Infrared Spectroscopy.
(4) High Pressure Liquid Chromatography.
(5) See Reference 1 and Section 2.3.1.
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2.3.1 Interlaminar Shear

The most common test for interlaminar shear strength of composite
laminates is the short beam shear (SBS) test of ASTM D2344. While this procedure calls
for specimens 6.4 mm (0.25 inch) thick, most short beam shear tests on composite
materials do not meet this requirement. The specimens are more commonly only around
3.2 mm (0.125 inch) or less thick. The typical result of such a test is that while a number
for apparent interlaminar shear strength is generated, the failure mode is seldom

interlaminar shear. An alternative test, referred to as Four-Point Shear (FPS), has been
proposed and has been demonstrated as more likely to produce true and consistent

interlaminar shear failure modes (Ref. 1). As a consequence of the advantages of the
FPS test over the SBS test, the FPS test was used in this investigation to generate
interlaminar shear data.

The FPS test is a modified version of the flexure test described in ASTM
D790, Method II, Procedure B. In order to ensure an interlaminar failure mode, however,

the support span is reduced to half the span used in flexural testing. Thus, the FPS tests
carried out in this investigation were conducted at support span to specimen thickness
ratios of 8 to 1 for the glass reinforced specimens and 16 to 1 for the graphite reinforced

specimens.

2.3.2 Glass Transition Temperature

Glass transition temperature (Tg) can be determined by means of
differential scanning calorimetry (DSC), thermomechanical analysis (TMA), and
dynamic mechanical analysis (DMA). In DSC, the Tg is determined from the position of
the shift in the baseline on a plot of heat release vs. temperature. The Tg values obtained
with DSC are consistently lower (by 20-40'C) than those obtained with either TMA or
DMA. In TMA, the Tg is determined from the location of change in slope of a plot of

change in specimen length vs. temperature. The Tg values obtained from TMA are
usually within 0-10'C of the value obtained with DMA. In DMA, the Tg is detcrmined
from the position of the peak in either the loss modulus (E") vs. temperature curve or the
tan 5 vs. temperature curve. The Tg values from the tan 8 curve are always higher than
those from the loss modulus curve.

8



In this investigation the Tg values were determined on neat EA9396 cast
resin samples by means of the loss modulus curve in a DMA test. The test was carried

out at a heating rate of 0.5°0C/rin.

2.3.3 Bearing StrnDth

Although this test was not carried out in accordance with an ASTM

standard, it was in accordance with the standard procedure for bearing strength presented

in MIL-HDBK-17B (Ref. 2).

2.3.4 Viscosity

Viscosity of the uncured resin was measured in general accordance with

ASTM Method D2393 using a Brookfield RVF Viscometer. All measurements were

carried out at 22±2°C (72±4°F).

2.3.5 Viscgsity Curing Profile

A viscosity curing profile is a continuous measure of polymer viscosity
during polymerization (cure). While the procedure can be carried out for any time-
temperature history, it is usually performed by heating the test sample at a constant rate
until cure is complete. This procedure was used for this investigation. Resin samples
were tested in a Rheometrics Solids Analyzer (RSA TI) at a heating rate of 1°C/minute

and a frequency of 1 Hz. The sample was contained in a parallel plate configuration and
both dynamic (1'V) and loss (1") viscosities were continuously recorded throughout the

test. The dynamic viscosity (1') was used as an indication of the resin viscosity behavior.

2.3.6 Differential Scanniing Calorimetry (DSC)

A DSC test measures the heat released by a test sample as its temperature
is raised. As the sample undergoes polymerization, the heat released during the

polymerization process is reflected as the area under the hump of the heat release vs.
temperature curve. If a sample is only partially polymerized, only part of the heat of
polymerization will be released and the area under the curve will be correspondingly

reduced. Thus, the heat release during a DSC test can be used as a measure of degree of

cure.

9
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The DSC tests carried out in this investigation were performed on a

DuPont 9900 instrument in accordance with generally accepted thermal analysis

techniques. Sample sizes were 5 mg.

2.3.7 Fourier Transform Infrared (FTR] Spectroscopv

FT1R spectroscopy is a widely use and standard analytical procedure that

can be used to identify the presence or absence of different chemical groups. FTIR

analysis in this study were performed with a Nicolet 200XD Transform Infrared

Spectrometer. These tests were performed on uncured resin samples after various
periods of storage to determine whether chemical changes occurred. The resin sample

was simply spread onto a salt crystal for mounting in the spectrometer.

2.3.8 High Pressure Liquid Chromatography (HPLC'

HPLC is also a widely used and generally well standardized procedure

that separates multicomponent formulations into their constituent parts. The separation

occurs because different components have different transit times through

chromatography columns. These differences arise because of differences in molecular

size and relative attraction to the column packing material.

In this program, samples were prepared for HPLC analysis by dissolving

in dioxane to a concentration of 1% by weight and filtering through a 0.5-micron PTFE

filter to remove insolubles. The gradient profile used during the HPLC test is listed

below. The flow rate during analysis was 0.5 m!/minute.

Time (minutes5) % Water 50ioxane

1 50 50

10 50 50

40 30 70
50 30 70

The analyses were carried out on a Hewlett-Packard Model 1090 instrument with a

reverse phase C-18 ZORBOX ODS column (250 x 4.6 mm) and a UV detector.

10
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2.4 PROCESSING PROCEDURES

The "Standard" laminate processing procedure is described in detail in
Appendix A, and the various "non-Standard" procedures are described in Appendix B.

We must note that this effort was not to develop or use the precise repair
processing procedure that might be used in actual on-aircraft repair with these materials.

Rather, a laboratory procedure was employed that was both convenient and that produced
laminate quality comparable to what would be expected in repair scenarios.

All of the laminates prepared during this investigation were prepared by wet-
layup hand-impregnation procedures. Most of the laminates were prepared in the same

manner, by what will be referred to as the "Standard" procedure. This includes all of the

baseline laminates (Table 2) and many of the supplemental laminates (Table 3). The
processing procedures used for the remainder of the supplemental laminates (Table 3)
diffcred from the "Standard" procedure in a variety of ways, depending on the particular
variable being investigated. Examples of such differences include a difference in cure

temperature, cure pressure, resin/reinforcement ratio, bagging scheme, or ply
impregnation procedure. A detailed step-by-step description of the "standard" procedure
is presented in Appendix A, along with the rationale for certain of the proce6,1ral details.

The amount of resin used to impregnate the reinforcing fabric was about 50%
more than the amount remaining in the laminate after cure, with the excess bled out the
top of the ply stack. The quantity of resin used to impregnate the reinforcing fabric was

determined as a ratio to the amount of reinforcement being impregnated. In the case of

the laminates used in this program, the resin was not apportioned equally to each ply of
reinforcement. Rather, every other ply was impregnated. This approach was adopted for
two reasons. First, it considerably shortened the time required to complete the wet-
layup, thereby eliminating potential pot life problems. Secondly, it permitted much more

resin to be distributed onto and worked into a ply. This made it much easier to uniformly

spread and impregnate a ply. The alternating dry plies were laid atop each wet

impregnated ply and manually tamped down so that in short order it was uniformly
wetted by resin from the preceding plies. The laminates were cured in an air circulating

oven for 45 minutes at 93°C (200'F) under vacuum pressure. The vacuum level applied
to the vacuum bag was typically -635 mm (25 inches) Hg.

11



SECTION 3
DISCUSSION OF RESULTS

As would be surmised from the tests outlined in Table 2, a very substantial
quantity of mechanical property data was generated during this program. The majority
of these data represent baseline tensile, compressive, inplane and interlaminar shear
properties that were determined on three different resin batches. In addition to these

baseline data, additional data, as outlined in Table 3, were generated on only a single

resin batch for a variety of different properties and processing or environmental exposure

variations.

The following sections (3.1 through 3.12) discuss these various test results item

by item. In these sections, all the data presented in either tabular or graphical form

represent average values. Individual specimen data are presented in Appendices C-Q.

3.1 LAMINATE PHYSICAL PROPERTIES

The physical properties of nearly every laminate fabricated during this program
were determined. These included specific gravity (D792), cured ply thickness, fiber

content, resin content, and void content (D2734). In the case of the glass reinforced

laminates, the fiber and resin contents were determined with an ignition loss procedure

(02584), while in the case of the graphite reinforced laminates, an acid digestion
procedure (D3171, procedure A) was used. Table 4 presents a summary of the laminate

physical property data for all the laminates prepared with the baseline fabrication

procedure. Appendix C presents individual panel data. The physical properties of
laminates fabricated by procedures that deviated from the baseline processing procedure

may have been different or equivalent to those listed in Table 4. depending on the nature

of the processing deviation. These will be noted as appropriate in the following sections.

It is apparent from the data in Table 4 that the laminate quality produced by the

standard baseline processing procedure described in Appendix A was very consistent.

While the void contents of these laminates was consistently in the vicinity of 5% by
volume, it must be remembered that this was for a vacuum bag cure. While no

mechanical property data were generated in this program on autoclave cured laminates.

some were prepared in this manner for another project and were essentially void free as a
result of the positive pressure during cure instead of vacuum pressure.

12



m C1

".4-

4-

cn >

00

ot

31



3.2 BATCH-TO-BATCH MECHANICAL PROPERTY COMPARISONS

The following four subsections present and discuss the results from the batch-to-
batch mechanical property comparisons in tension, compression, inplane shear, and

interlaminar shear. Table 2 listed the test matrices for these tests and indicated the data

that was obtained. All of the laminates used for these tests were prepared in accordance
with the standard processing procedures described in Appendix A. The data from these

tests are considered as the "baseline" properties and are so referred to in later sections and

tables of this report.

3.2.1 Tension

Tension tests were carried out in both the longitudinal (warp) and
transverse (fill) directions for both reinforcements (graphite and glass fabric) and all

three resin batches. Tables 5-10 summarize the tensile data from the baseline tests.
While it is evident from the data in these tables that there are no appreciable differences

evident between the three batches of resin, the effect of temperature and moisture are

very apparent.

3.2.2 Compression

Compression tests were carried out in both the longitudinal (warp) and
transverse (fill) directions for both reinforcements (graphite and glass fabric) and all

three resin batches. Tables 11-16 summarize the compression data from the baseline

tests. As with the tensile data, it is evident that there are no appreciable differences

evident between the three batches of resin.

3.2.3 Inplane She

Inplane shear tests were carried out on both reinforcements (graphite and

glass fabric) and all three resin batches. Tables 17-20 summarize the inplane shear data

from the baseline tests. As with the tensile and compression data, no appreciable batch-

to-batch differences are evident in the inplane shear data.

3.2.4 Interlaminal Shear

Interlaminar shear tests were carried out on both reinforcements (graphite

and glass fabric) and all three resin batches. interlaminar shear tests, however, were not

performed for as many of the test conditions as was the case for tension, compression,

14
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and inplane shear. Table 21 summarizes the interlaminar shear data from the baseline

tests. Again, all three resin batches produced very similar property levels.

3.3 GLASS TRANSITION TEMPERATURE

As note - Section 2.3.2 and Table 2, Tg measurements were carried out on neat

resin samples foi dry and wet conditions by means of a DMA test. Figure 1

illustrates a typir" .AA test result, and the Tg valuedetermined from the analysis is

indicated in the figre. Table 22 summarizes the Tg data from the baseline tests. It is

apparent from the data in Table 22 that the batch-to-batch Tg values are in excellent

agreement and also that absorbed moisture significantly reduces the Tg of EA9396.

An additional Tg test was performed on a neat EA9396 resin sample that was

cured at a lower temperature and for a shorter time than the standard cure condition.

This value is also listed in Table 22 for comparison. The reduced Tg value for this

shorter, lower temperature cure suggests that cure is incomplete and this corroborates the

results from the cure studies that are discussed in Sections 3.5.1 and 3.5.2.

3.4 BEARING STRENGTH

Bearing strength tests were performed on only one of the three resin batches. All

of the laminates used for bearing strength tests were prepared and cured in accordance
with the standard baseline processing procedures, detailed in Appendix A. Bearing

strength tests were carried out on both reinforcements (graphite and glass fabric) and in

both the wet and dry condition although only at room temperature. Table 23 summarizes

the bearing test data. It is evident from these data that absorbed moisture significantly

reduces bearing strength.

3.5 EFFECT OF NONBASELINE CURE/PROCESSING CONDITIONS

The baseline cure condition used ini this program was a vacuum bag cure at 93°C

(200°F) for 45 minutes. Alternative conditions that were used included curing at both

lower and higher temperatures, lower and higher cure vacuum levels than the baseline

635 mm (25 in) Hg, and cure times other than 45 minutes. Laminates processed at these

alternative conditions were tested for interlaminar shear strength to assess the effect of

the alternative cure. In addition, a number of differential scanning calorimetry (DSC)

measurements were made for different cure temperatures and cure histories.
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TABLE 22

GLASS TRANSITION TEMPERATURE OF EA9396
NEAT RESIN CASTINGS (1)

Resin Batch Tg (2) Weight Gain
Number Test Condition (°C) (OF) During Aging (%)

1 - Avg. Dry 175 347 N.A.

2 - Avg. Dry 176 349 N.A.

3 - Avg. Dry 177 350 N.A.

1 - Avg. Wet (3) 106 223 9.1

2 - Avg. Wet (3) 108 226 8.7

3 - Avg. Wet (3) 107 225 8.8

NA (4) Dry 149 300 N.A.

(1) Castings cured 45 minutes at 93°C (200'F) unless otherwise noted.
(2) Listed values represent averages of three test samples from each resin batch.
(3) Wet = Aging at 60'C (140'F), 95-100% R.H. until saturated.
(4) Casting cured 30 minutes at 82°C (180'F).

TABLE 23

ROOM TEMPERATURE BEARING STRENGTH OF EA9396
COMPOSITE MATERIAL

Bearing Strength @ Max. Bearing
Reinforcement Aging Condition 4% Elong. (ksi) Strength (ksi)

E-7781 Glass None(dry) 42.4 54.9
Wet (1) 21.6 35.1

T300-W 133 None (dry) 58.3 71.3
Graphite Wet (1) 33.7 89.0

(1) Wet aged at 60'C (140'F), 95-100% RH until saturated.
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3.5.1 Effect of Cure Temperature on Degre of Cure by DSC

Both isothermal and dyc~aar,.c DSC measurements were made on neat

uncured EA9396 resin samples. Table 24 summarizes the data obtained from these tests.

Figure 2 illustrates typical dynamic and isothermal DSC test scans. Heat released as a

result of the polymerization (or cure) reaction causes the plotted curve to rise above the

baseline. The area under this curve corresponds to the total heat released during the

curing reaction. In the two curves illustrated in Figure 2, the total heat released was

535.1 J/gm for the case of the dynamic scan and 479.3 J/gm for the case of the isotheniial

scan. The higher heat release value for the dynamic test implies that the sample was
more completely cured during this test than in the isothermal test. This is a logical result

since the sample was heated to a substantially higher maximum temperature in the
dynamic test (>2000C (>392 0F)) than in the isothermal test (82°C (180'F)).

In the case of the isothermal tests, a second DSC test, carried out in the

dynamic mode at 2°C/minute, was performed on each sample to determine residual

exotherm. Figure 3 illustrates a dynamic DSC test result from which residual exotherm,

or heat release during postcure, was obtained.

The first two tests listed in Table 24, dynamic tests at 1OC/minute and
l°C/minute, respectively, were performed to establish the total exotherm (total heat

release during cure) of the EA9396 resin and to determine whether heating rate caused

significant differences in exotherm. From these tests, it appears that between 535 and

574 J/gm are released by EA9396 when it is completely cured. Following these tests,

four isothermal tests were carried out over the temperature range of 66-1071C

(150-225 0 F).

It is evident from the isothermal data that as the cure temperature
increases, the degree of cure, as measured by the heat release, increases and the residual

exotherm (or remaining cure that can be achieved) diminishes. Examination of the

residual exotherm DSC curves are particularly interesting in that they demonstrate that

the remainder of the cure still to be accomplished after the initial cure, does not begin

until the temperature is considerably higher than the temperature at which the initial cure
occurred. This is evident by comparing the curves in Figures 2b and 3. The data in

Table 24 show that the postcure initiation temperature becomes progressively higher as

the initial cure temperature is increased. Another point of interest from the data for the

four isothermal tests in the center of Table 24 is that the sum of the heat released during
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Somplov EA 9396
S1Z4h S. 7940 PQ

Comm•ri.. IGO C/NI N.

112. 491C

to-

A5
0S 92

31, 2'
SI.21C535. * J/tg

~25 300 0. 5

(a) Dynamic DSC Heat Release Test for Curing of EA9396.

k-2oq~s EA WMU

Sixes 5.r7DD eq USC
xeth,4 Dec-ISO 0 •6'C
Co.ia4nU 2oc/piv1n0 0 92C

40

12:

20 40 so 00 140 100 ISO 20C
Times (join)

(b Isothermal DSC Heat Ulease Test for Curing ot EA9396 at 820C
(1800 F).

Figure 2. Typical Dynamic and Isothermal Heat Release Test

Results for Curing of EA9396.
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the cure and postcure ranges between 522 and 544 J/gm. These total heat release values
are in excellent agreement with the total heat release values determined previously for the
two dynamic tests.

The last two DSC tests that were conducted were aimed at determining:

(a) whether an 82°C (180*F) cure, followed by a 7-day postcure at
room temperature, would produce full cure, and

(b) how much cure could be achieved in a 7-day cure at room
temperature.

In the former instance, one would expect a dynamic residual exotherm test that was

delayed 7 days after the initial 820C (180°1) isothermal cure, to exhibit no additional
heat release if cure had proceeded to completion during the intervening week at room
temperature. In the latter case, the amount of residual exotherm remaining would
provide a measure of how complete the cure was in the initial 7-day room temperature

cure.

Note from the data in Table 24 that after an 820C (1800F) cure, an
additional 7 days at room temperature did not appear to produce any additional cure since

only an additional 60 J/gm of exotherm was measured after the 7-day period.

The 7-day room temperature cure appeared to produce only about 68% of
full cure since an additional 170 J/gm of exotherm was measured in a dynamic DSC test
after the 7-day room temperature cure. This is consistent with the pattern observed in the

other isothermal cure tests.

Based on these measurements, the baseline cure schedule of 45 minutes at

93°C (2001F) would appear to produce approximately 90% of the full cure in so far as
heat release is concerned. Thus one would expect that extended subsequent exposure to

temperatures above this level would drive the material to more complete cure. These
results are consistent with the Tg data discussed in Section 3.3, in which a shorter, lower

temperature cure produced a lower Tg than the standard cure, implying a lower degree of
cure.
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3.5.2 Effect of Cure Time and Temperature on Interlaminar Shear Strength

Graphite fabric reinforced laminates were impregnated and cured at

various combinations of time and temperature and then tested for interlaminar shear

strength. Table 25 presented the data obtained from these tests.

It is evident that for all of the cures carried out at 800C (175°F) or higher,

the room temperature dry shear strength is basically equivalent while it falls off

somewhat for the reduced temperature cure. There appears to be a slight loss of wet

shear strength levels for reduced cure temperatures but so long as the cure temperature

remains at 80'C (175°F) or above, the loss is not much more than about 10%. The room

temperature cure, on the other hand, results in a wet room temperature shear strength that

is nearly 25% below that produced by the higher temperature cures.

3.5.3 Effect of Cure Vacuum Pressure on Irterlaminar Shear Strength

Glass fabric reinforced laminates were impregnated and cured at the

standard baseline cure condition of 45 minutes at 93°C (200*F) but at vacuum pressure

levels both above and below the nominal 635 mm (25 in) Hg used with the baseline

laminates. These laminates were then tested for interlaminar shear strength. Table 26

presents these test results, as well as the physical properties for each of these laminates.

The physical property data show several logical trends. Specific gravity increases and

ply thickness decreases with increasing cure vacuum level. The shear strength behavior

appears to be independent of vacuum level until the vacuum level falls below 625 mm

(25 in) Hg. At lower vacuum levels than this, the shear strength is noticeably lower.

This may be, in part, a result of the fact that the void contents of the laminates cured

under the reduced vacuum levels are higher than the normal 5% that occurs in the

laminates cured under 635 mm (25 in) Hg vacuum.

3.6 RESIN POT/WORK LIFE

Two different types of pot-life or work-life tests were carried out. The purpose of

the first was to determine the time available before a freshly mixed resin batch advanced

to gel. The purpose of the second was to determine the time available before an

impregnated layup advanced so far that it was no longer workable.

In the first test, two 200-gram samples of EA9396 were mixed and placed in

22'C (72'F) and 38'C (100°F) environments while pot-life observations were recorded.
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TABLE 25

EFFECT OF CURE TEMPERATURE ON INTERLAMINAR
SHEAR STRENGTH OF GRAPHITE REINFORCED

EA9396 LAMINATES

Interlaminar Shear Strength (psi) (2)
Cure Condition 22°C (72*F), Dry 220C (72 0 F), Wet (4) 93°C (200°F), Wet (4)

45 min. at 107°C 6120 4540
(2250F)

45 min. at 930 C 5700 4700 2340
(2000F) (3)

30 min. at 93°C 6220 4430 2270
(2000 F)

30 min. at 82'C 6230 4340 1900
(180 0 F)

45 min. at 79.50C 5640 4020
(175 0 F)

7 days at 220 C (72°F) 5010 3410
plus additional 3 mos.

dry storage or wet
aging

(1) All cures were under nominally full vacuum pressure - 25 in. Hg).
(2) Four-point shear test procedure.
(3) This represents the baseline cure schedule used throughout the program.
(4) Wet aged at 600C (140 0 F), 95-100% R.H. till saturated.
(5) Laminate under compacting vacuum bag pressure only during first few hours of

22°C (72°F) cure. Remaining 164 hrs. of cure at 22'C (72°F) under ambient
conditions.
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These pot-life measurements were repeated on samples from the same batch of resin after
20 months of storage at 4°C (400F). Table 27 presents the results of these tests.

In the second test, two 12-ply graphite fabric reinforced laminates were
impregnated with freshly mixed EA9396 resin and then placed in 220C (72°F) to 38'C

(100°F) environments while observations were recorded on the state of the matrix resin.
Table 28 presents the results of these tests.

It is apparent from the data in Tables 27 and 28 that the pot/work life is markedly
shortened by increasing the temp - e from 220C (72°F) to 380 C (100 0 F). In addition,

the effect of long-term storage is to reduce the available pot life and especially to shorten

the time betwetrn first noticeable exotherm and final kick-over. In spite of the shortened
pot-life or work-life available after extended storage for the conditions examined, the
available time is still probably sufficient to permit most repairs to be satisfactorily

completed.

3.7 EFFECT OF STORAGE TIME AND TEMPERATURE

The purpose of these tests was to dntermine how the processability of the materi,1l

changed and whether good mechanical property levels could still be achieved after

extended resin storage at ambient and elevated temperature. The tests listed in Table 3
were periodically conducted over a 30- month storage period. Samples of both parts A

and B of a single batch of the EA9396 resin system were placed in storage at room

temperature, 38'C (IOOOF) and 490C (120'F). The samples were stored in the cans they
were received in from the vendor.

The HPLC, FTIR. DSC and Rheometrics viscosity profile measurements failed to

reveal any significant changes in the resin system as a result of 24 months storage at any

of the three storage temperatures. Figure 4 presents HPLC spectra for part A of the
EA9396 system in the freshly received condition (-3 months after manufacture) and after

18 months of storage at 49°C (120'F), respectively. Both spectra were generated using

the same test parameters. It is evident that no significant difference appears. The tl'11-
spectra for 24 months at all three storage temperatures indicated equivalent behavior.

Since no comp inents are pre~ont in Part B of the EA9396 system that prxdL!ce significant

feature.; in P- 'IPI.C spectra. thi., test was not perfonned on Part B.
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TABLE 27

POT LIFE OBSERVATIONS FOR 200-GRAM BATCH OF EA9396 (1)

Time to First
Notice of Exotherm Time to Boil/Gel (2)

Storage Condition Test Temperature (min. after mixing) (min. after mixing)

Freshly Received 22 0C (720 F) 105 112/113
390C (100IF) 40 60/61

20 months at 22 0C (72°F) 90 92/94
380C (100 0 F) 40 42/43

(1) Times listed were measured from completion of mixing.
(2) At the first times indicated, the two samples were so hot that they were bubbling

and smoking. Gel followed within a minute of this.

TABLE 28

WORK LIFE OBSERVATIONS OF 12-PLY GRAPHITE LAMINATE
iMPREGNATED WITH EA9396 A/B RESIN (1)

Time at Which
Maximum Time to Surface is no

Temperature Midplane Become Tacky Time to Lose Longer Indentable
Environment Temp. (2) (rini) (3) Tack (min) (4) (min) (5)

22°C (72°F) 29-C (84°F) -60 210 240

3ýOC (1O00F) 470C -5) 100 100
(116°F)

(i) Times listed were measured from completion of laminate impregnation.
Impregnation required approximately 15 minutes after completion of nixing.

(2) Midplane temperature recorded wi0h imbedded thermocouple.
(3) Subjective judgement of when resin chamges from thick syrupy state to a sticky,

nonliquid state.
(4) Subjective judgement.
(5) Unable to make an inipression on %[urface of lamina.te with a wooden tongue

depressor ain hailnd pressure.
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U

(a) Fresh Resin.

I K:

(b) Resin Aged for Eighteen Months at 490 C (120 0 F).

Test Parameters: Resin dissolved in dioxane
Flow rate: 1 ml/min
Gradient Profile

Time (minutes) % Water % Dioxane

0 50 50
10 50 50
40 30 70
50 30 70

Figure 4. HPLC Spectra of EA9396, Part A.
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Figuies 5 and 6 present FTIR spectra for both parts A and B in the fresh condition

and after 24 months storage at 49°C (120°F). No significant changes between the fresh

and 24-month aged material is apparent for either parts A or B.

Figure 7 presents a Rheometrics cure profile for fresh EA9396 material. Similar

curves were obtained every 6 months for up to 24 months at each of the three storage

temperatures. Table 29 lists key information extracted from each of these cure profiles.

It is evident from the data in Table 29 that no changes are apparent as storage time

increases.

Figure 8 presents a DSC curve for fresh EA9396 material. Additional curves

were generated every 6 months for up to 24 months at each of the three storage

temperatures. Table 30 lists key information extracted from each of these DSC tests. As

with the data from the cure profiles, no significant changes are apparent in the data of

Table 30 as storage time increases.

The room temperature viscosity of parts A and B was also measured, using a

Brookfield viscometer, as storage time increased. While the viscosity of the unmixed

part B did not change during storage, part A did. Table 31 lists these changes. It is

evident that at the 490C (1201F) storage temperature viscosity starts to increase markedly

after 12 months. After 30 months storage at 49'C (120°F), part A had become much too

viscous to use at room temperature for wet layup impregnation of a laminate. After

36 months at 38'C (100'F), the viscosity of part A was still low enough to be processible

by wet layup impregnation although the material was starting to show a marked viscosity

increase. At the 22'C (72°F) storage condition, the resin was still usable after over four

years.

In addition to the tests discussed above, the EAQ396 resin samples that were in

storage at the three different temperatures were also used to prepare graphite fabric

reinforced laminates for interlaminar shear testing after various storage intervals. The

interlaminar shear properties achievable from stored resin was not degraded at all so long

as the viscosity remained low enough to permit wet layup impregnation of the

reinforcement. In fact, it appears that an increased interlaminar shear strength is possible

over time. Table 32 presents these data.
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Figure 5. FTIR Spectra of EA9396, Part A.

47



9 CA9868 PART 0 ZI Nov an 12. 1•t•311

Z
U

VI

4000. 0 Z200. 0 Z400. 0 1800. 0 19O0.0 1100.0 850g. oO 50o. 00 A00. 00

WAVENLJUMERS (CM-10)

(a) Fresh Resin.

8
S 9A 0902 PART Be I YR AT 120F 2 Doe 90 Is$Itoas

T

U

0d

O• §
0

o 4-4 ,

0I

4000. 0 3200. 0 2400. 0 1900. 0 1500.0 1100. 0 so. 00 50. 00 400. 00
WAVENUMOERS (CH-I)

(b) Resin Aged For Two Years at 49 C (120'F).

Figure 6. FTIR Spectra of EA9396, Part B.
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TABLE 29

EFFECT OF LONG-TERM STORAGE AT ELEVATED TEMPERATURE ON
THE CURING VISCOSITY PROFILE CHARACTERISTICS OF EA9396

Storage Conditions Temperature at Minimum Viscosity Gel Temperature
Minimum Viscosity (poise) (OC)

Initial 49 -257 70.5
1 month at 38°C 51 -150 71.6

(100 0F)
I month at 49°C 47 -150 71.9

(120 0 F)
3 months at 22°C 50 -40 73.3

(72°F)
6 months at 22°C 48 -110 66.8

(720 F)
6 months at 380 C 45 -110 65.9

(1O0OF)
6 months at 49'C 44 -200 67.8

(120 0 F)
12 months at 220C 67 -149 71.9

(72 0F)
12 months at 380C 66 -46 72.6

(I00°F)
12 months at 490C 64 -64 71.4

(1200 F)
18 months at 22 0C 49 -54 70.5

(72°F)
18 months at 38°C 47 -54 68.4

(100°F)
18 months at 49°C 47 -127 68.4

(120 0F)
24 months at 22°C 47 -60 71.6

(72 0F)
24 months at 380 C 50 -60 71.6

(100°F)
24 months at 490 C 51 -120 70.5

(120 0F)

NOTE: Test conducted on Rheometrics Solids Analyzer using a heating rate of lVC
(340 F)/minute.
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FABLE 30

EFi-ECT OF LONG-TERM STORAGE AT ELEVATED TEMPERATURE ON
THE CALORIMETRIC CURE CHARACTERISTICS OF EA9396

Temperature at Total Heat of Cure
Storage Conditions Reaction Peak (0C) (J/gm)

Initial 112.5 576.2
1 month at 38°C 115.2 588.8

(100-F)
1 month at 490C 114.6 576.4

(120°F)
3 months at 22*C 115.0 572.9

(720F)
6 months at 22 0C 108.9 633.8

(720F)
6 months at 38*C 110.9 593.5

(100WF)
6 months at 49°C 111.8 624.6

(1200F)
12 months at 22°C 112.8 613.4

(72-F)
12 months at 38'C 114.3 589.5

(100°F)
12 months at 49C 112.6 601.6

(120 0F)
18 months at 22'C 107.2 615.4

(72°F)
18 months at 380 C 111.5 564.6

(100-F)
18 months at 49'C 112.8 586.8

(120WF)
24 months at 22'C 114.1 599.6

(72 0F)
24 months at 38'C 115.1 575.6

(100OF)
24 months at 490 C 114.1 560.6

(120°F)

NOTE: Dynamic DSC test at heating rate of I00 C/minute under nitrogen.



TABLE 31

EFFECT OF LONG-TERM STORAGE AT ELEVATED
TEMPERATURE ON THE VISCOSITY OF EA9396, PART A

Storage Storage Time (1) Brookfield Viscosity of Part A
Temperature (months) (Pa-s) (Poise)

220C (720F) Initial 84 840
3 92 920
6 72 720
12 72 720
18 112 1,120
24 82 820
30 78 780
36 80 800
43 100 1,000
50 100 1,000

38cC (100°F) 1 84 840
7 84 840
12 96 960
18 108 1,080
24 84 840
30 234 2,340
36 460 4,600
43 >2,000 >20,000(2)
50 --- (3)

490C (120 0 F) 1 88 880
7 88 880
12 100 1,000
18 263 2,630
21 344 3,440
24 650 6,500

1 30 >2,000 >20,000(2)

NOTES:
1. Months after receipt of resin. Resin was manufactured three months before receipt.
2. Material no longer processible into laminates.
3. Hard crust on surface.
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TABLE 32

EFFECT OF LONG-TERM STORAGE AT ELEVATED TEMPERATURE
ON ACHIEVABLE INTERLAMINAR SHEAR STRENGTH OF GRAPHITE-

REINFORCED T300-W133/EA9396 COMPOSITE MATERIAL

Storage Interlaminar Shear Strength (32 Wt. Gain
Storage Time (2) DRY WET (4) During Wet
Temp. (months)_ (MPa) (psi) (MP (.si) Aging(%) (4)

22-C (72 0F) Initial 37.56 5447 25.91 3758 3.91
3 38.27 5515 31.46 4563 1.56(5)
6 42.60 6178 30.40 4409 2.68
12 36.94 5357 29.95 4344 2.59
18 42.21 6122 31.88 4624 2.65
24 46.28 6712 32.00 4641 2.63
43 45.59 6612 33.86 4910 2.86
50 43.76 6347 ---

38-C (100-F) 1 42.52 6166 32.82 4759 2.70
6 42.77 6202 32.31 4686 2.61
12 43.72 6341 32.77 4752 2.54
18 44.32 6427 35.80 5192 2.65
24 40.48 5871 28.05 4068 2.80
43 45.59 6612 33.48 4856 3.02

49-C (120-F) 1 39.29 5698 29.83 4326 2.90
6 42.88 6218 29.29 4247 2.79
12 42.52 6167 26.08 3782 4.25
18 46.41 6731 35.65 5170 2.65
24 43.15 6257 31.59 1 4581 2.83

NOTES:
1. EA9396 Parts A and B stored at temperature listed for time listed before resin was

mixed and laminate prepared.
2. From date of receipt. Resin was manufactured 3 months before receipt.
3. All tests were conducted at 220C (72°F). Dry values represent average of three

specimens, wet values represent average of two specimens.
4. WET = specimens immersed in water at 60'C (140'F) until saturated before being

tested unless otherwise noted.
5. Immersed in water at 22°C (72)F) until saturated before being tested.
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In summary, it appears that the EA9396 resin system is very tolerant of long-term

storage. It is still useable after 24 months storage at 49°C (120 0F) and after over

50 months storage at a temperature of 22°C (72TF).

3.8 EFFECT OF FIBER CONTENT

Since field or depot repairs may be subject to greater inconsistency in control of

processing parameters than was the case in a laboratory environment, several laminates

were prepared with deliberately lower fiber contents than the baseline laminates. These

were then tested for both interlaminar shear and compressive properties. Both glass and

graphite fabric reinforced laminates were prepared with fiber contents ranging from the
standard 55% by volume down to as low as 34% by volume. The low fiber content

laminates were all cured by the same "standard cure cycle", described in step (m) of

Appendix A, that was used for the baseline laminates. The differences in fiber content

were achieved by changing the bleeder ply/laminate ply ratio used during cure and/or the

ratio of resin to reinforcement used during impregnation (see Table A.2 in Appendix A).

Two attempts were made to obtain higher than normal fiber content laminates. In one

case, the bleeder ratio was increased by 50% and the resin ratio reduced by 5% from the

standard. In the other case, the bleeder ratio was not changed but the resin ratio was

reduced by 27% from the standard. In each case, the resulting laminate exhibited

practically identical physical characteristics (fiber content, void content) to the baseline

laminates. This implies that one is not likely to obtain much higher fiber contents than

that exhibited by the baseline laminates regardless of processing variations encountered

in the field. The same should not be said with regard to void content since it is likely that

some processing variations would affect porosity. Reduced fiber contents, on the other

hand, were achieved by simultaneously reducing the bleeder ratio and raising the resin

ratio during impregnation. In the extreme cases, in which the lowest fiber contents were

achieved, the bleeder was eliminated entirely while the resin ratio used during
impregnation was increased to 150% and 180% of the standard ratio for graphite and

glass reinforced laminates, respectively. Interlaminar shear and compression specimens
were machined and tested from these reduced fiber conter. laminates. The data from

these tests are presented in Tables 33 and 34.

Examination of the data in Table 33 reveals several points. First, it appears that

the interlaminar shear strength is influenced by both fiber and void content. In the case

of the glass reinforced laminates, the two lowest shear strengths were produced by

laminates that had significantly lowei fiber content and significantly higher - oid content
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than the other five laminates. In the case of the graphite reinforced laminates, the two

laminates with the lowest fiber content exhibited significantly lower shear strengths than

the other five laminates. Similar behavior is observed in the case of the compressive

properties, presented in Table 34. For both the glass and graphite reinforced laminates,

the compressive strength is lowest for the laminates with low fiber content and high void

content.

In summary, the shear and compression data in Tables 33 and 34 indicate that

laminate strength is reduced with decreasing fiber content and increasing void content.

For example, in Tables 33 and 34, panel numbers GL-53 and GL-54 had the lowest fiber

contents and the highest void contents and also produced the lowest strengths. Similarly,

panel GR-79 had the lowest fiber content and an intermediate void content and produced

the second lowest strengths, while panel GR-84 had the second lowest fiber content and

the highest void content and produced the lowest strengths. It also appears that the

laminates that were deliberately prepared with low fiber contents generally had higher

void contents than baseline laminates. This indicates that low fiber content (resin-rich)

laminates should be avoided if optimum properties are desired.

3.9 ALTERNATE IMPREGNATION AND BAGGING SCHEMES

Appendix A describes the rationale behind the individual steps in the "standard

processing procedure." This procedure was selected for use in the laboratory because it

was convenient and because it produced laminate quality consistent with what would be

expected in repair scenarios using a vacuum bag curve. A number of laminates were

prepared during the program, however, by procedures that differed from the standard

procedures. These differences were in the areas of ply impregnation procedures, bleeder

material used, and bagging scheme employed. Each of the activities undertaken in these

respective subject areas are discussed in the following sections.

3.9.1 Alternate Ply Impregnation Procedure

It was recognized that repair technicians working in the field might elect

to employ different processing procedures than were used here. In order to anticipate

what these different procedures might be, and to determine their effects on resulting

laminate quality, two variations from the standard ply impregnation procedure were

investigated.
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In the first, the resin was applied to every ply instead of every other ply as
in the standard procedure. In the second, a lower ratio of resin to reinforcement was

employed during the impregnation steps than in the standard procedure. Each of these

variant procedures is described in detail in Appendix B but a brief summary of each is

presented in the following paragraphs.

The first variant impregnation procedure involved applying resin to every

reinforcement ply during the wet layup procedure instead of every other ply. The reason

for doing this was to determine whether laminate quality (specifically, void content)

would be adversely affected. Since only half as much resin was available to be applied

and worked into each ply, it was thought that resin distribution might be less uniform and

that more voids due to air entrapment might result. As in the "standard procedure," the

total amount of resin used during impregnation represented a 50% excess over what was

desired in the final laminate. The same amount was applied to every ply, including the

first and last, as opposed to the resin distribution approach described in steps (e)-(j) of

Appendix A. Other than this, all other steps were identical to those described in

Appendix A.

The physical properties of specimens cut from this panel are presented in

Table 35. Table 35 shows that while this laminate had a slightly higher void content than

the baseline laminates made with the standard processing procedure (Table 4), the

difference was within the range of the standard deviation of the baseline panels. The

other physical properties are also very nearly equivalent to those exhibited by the

baseline panels.

The second variant impregnation procedure involved using a smaller

quantity of resin during impregnation of the reinforcement plies than the amount

computed in step (c) of Appendix A. The reason for doing this was to determine whether

equivalent laminate quality (specifically void content) could be achieved without

bleeding excess resin out of the wet layup stack. Instead of the 50% excess used in the

standard procedure, the amount used for this laminate represented 0% excess (nominally

net resin content). Thus, the resin/reinforcement ratio employed for this laminate was

only 0.370 gm resin/gm reinforcement instead of the 0.555 gms listed in Table A.2. The

other difference was that since no excess resin was used, no bleeder plies were used

during cure. Other than these two variations, all other steps were identical to those

described in Appendix A.
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The physical properties of specimens cut from this panel are presented in
Table 35. It is evident from these data that void content was not adversely affected by

this alternative processing procedure. It does appear, however, that the panel was
somewhat more resin-rich than the baseline panels made with bleeder plies during cure.
This is probably because the amount of resin used was only nominally net resin content,

not precisely net resin content.

Based on these two variations in resin impregnation procedures, it appears
that essentially equivalent laminate quality can be achieved with a variety of procedures.

3.9.2 Alternative Bleeder Materials

All of the baseline laminates prepared during this program, as well as
nearly all the other laminates prepared in accordance with the "Standard Laminate
Processing Procedure," were bagged according to Figure A.1 using Mochburg CW 1850

bleeder, which had an area weight of 71 gm/im2 . It was empirically determined that this
bleeder material typically absorbed about three times its own weight of EA9396 resin
during a cure cycle when used in the ply ratios listed in Table A.2. This was used as
bleeder material only because it was readily available and because of prior experience
with it. It was recognized, however, that in field repair scenarios, this particular bleeder
material might not be available. Several laminates were, therefore, prepared using the

same fabric material as bleeder as was used for reinforcement in the wet layup,
specifically, the E-7781 glass and T300-W133 graphite fabrics described in Table 1. The
absorptivity of these materials as bleeder was characterized, and the physical properties

of the laminates made using them were determined to demonstrate equivalence to the
baseline laminates made using the standard processing procedure. The procedure used to
determine bleeder material absorptivity is described in Appendix R. Table 36
summarizes the results obtained for the laminates made with the glass and graphite fabric
as bleeder material. Other than the bleeder material, these laminates were prepared in

accordance with the standard procedure described in Appendix A.

3.9.3 Alternative Bagging Schemes

The standard laminate bagging scheme, illustrated in Figure A. 1, was
employed for the large majority of the laminates prepared in this program. Two

alternative bagging schemes were investigated, however, in an effort to see if the void
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content could be reduced by means readily available to technicians carrying out field

repairs.

The first variant was to perforate the normally nonporous barrier between

the bleeder material and the breather material. The rationale for this was that this

perforation permits the vacuum, when it is applied, to draw air out of the bleeder instead

of forcing it into the layup. It was speculated that air might be trapped in the bleeder

when the vacuum was applied because the caul plate would be pressed down so tightly

that air escape paths would be shut off. The altered layup scheme is described in detail

and illustrated in Appendix B. Instead of separating the bleeder material from the

breather material with the two layers of nonporous teflon and a caul plate, the modified

layup scheme consisted of a single layer of nonporous teflon film with a series of knife

slits separating the two. A glass fabric reinforced laminate was prepared in this manner.

Physical and interlaminar shear properties of this laminate were determined. Table 37

presents the data for this laminate and also for comparable baseline laminates. While the

physical properties of the experimental laminate prepared with the perforated film

procedure are slightly inferior to those exhibited by the laminates made with the baseline

procedure, the interlaminar shear strength is about 15 percent higher. Since the higher

void content of the experimental laminate is higher than that of the baseline laminates,

one would normally expect the interlaminar shear properties to be lower. The only

reason that can be offered to explain this is that the experimental laminate was made

approximately 12 months after the baseline laminates. As was discussed in Section 3.7,

interlaminar shear properties delivered by laminates made with 1 year old resin are

higher than those delivered by laminates made with relatively fresh resin (by about 11%

in the case of 22°C (72°F) dry tests -- see Table 32).

The second variant was to ulitize a double-bag vacuum scheme rather than

the single-bag scheme illustrated in Figure A. 1. The rationale for this approach was that

while the vacuum applied in the single bag scheme supposedly aids in drawing air and

volatiles out of the laminate, the compaction of the layup resulting from the vacuum bag

may pinch off escape paths and trap air and volatile• iii the iayup. The idea of the double

bag scheme is to permit the layup to "breathe" even while under vacuum by reducing the

compacting force during the early part of the cure cycle. The double bag layup scheme is

described in detail and illustrated in Appendix B. A graphite fabric reinforced laminate

was prepared using this double bag scheme and both physical and interlaminar shear

properties of this laminate were determined. Table 38 presents these data for both this
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laminate and also for comparable baseline laminates. While the physical properties of

the experimental laminate prepared with the double-bag vacuum scheme are essentially

equivalent to those exhibited by laminates made with the baseline procedure, the

interlarinar shear strength values are about 10 percent higher. As noted for the laminate

made with the perforated film (Table 37), the higher interlaminar shear strength listed in

Table 38 for the double-bag laminate may well be attributable to the fact that the

EA9396 resin used for this laminate was 13 months older than that used for the baseline

laminates. Again, Table 32 shows that 1 year old resin produces an interlaminar shear

strength about 11% higher than fresh resin.

Based on the results of these two modified bagging schemes, it appears

that both produced laminates that were essentially equivalent to those produced by the

standard baseline processing procedure.

3.10 HONEYCOMB SANDWICH BEHAVIOR

Two types of honeycomb sandwich specimens were made and tested, edgewise

compression, and flatwise tension. The former type specimens were utilized to

investigate whether skin dimpling, if it occurred, would reduce the edgewise compression

strength. The latter type specimens were utilized to investigate the effects of adhesive

fillet size on flatwise tensile strength. Both specimen types consisted of honeycomb core

with composite skins bonded to the core with a layer of epoxy adhesive (EA9394 by

Dexter Hysol). The honeycomb core was either 126.5 Kg/m 3 (7.9 lb/ft3 ) or 91.3 Kg/m3

(5.7 lb/ft3 ) density material. Both cores were from Hexcel and were designated CRIII-

1/4-5052-.004N-7.9 and CRIII-3/16-5052-.002-5.7, respectively. These two honeycomb

sandwich investigations are discussed in detail in the following sections.

3.10.1 Effect of Skin Cocuring on Edgewise Compression Behavior

When skin repairs are made on honeycomb core substrates, the skin is

relatively thin, typically as few as only two plies in some cases. If the skin is cocured,

under a compacting vacuum bag pressure, the cured skin may exhibit the imprint of the

honeycomb substrate. This is called dimpling and results in a skin that is not flat, but is

somewhat rippled, as illustrated in Figure 9. Since one failure mode in edgewise

compression can consist of skin buckling, it was felt that if dimpling does occur during

cocure, the resulting edgewise compression strength may be reduced from what it would

be with straight, undimplied skins.
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(a) Dimpled skin (exaggerated) resulting from cocuring composite skin and
adhesive under vacuum bag compaction.

(b) Flat, undimpled skin resulting from precuring the composite skin on L
a flat tool and then bonding it to the core in a second step.

Figure 9. Comparison of Cocured and Secondarily Bonded Honeycomb

Sandwich Skins.
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This possibility was investigated by preparing honeycomb sandwich

panels both by cocuring and by secondarily bonding flat composite skins to the core.

When graphite fabric was used for the skin, each skin was two plies thick. When glass

fabric was used, each skin was four plies thick, since the glass fabric plies were only

about half as thick as the graphite plies. On all sandwich panels, an adhesive layer

consisting of a ply of style 120 glass fabric impregnated with 0.21 gm/cm 2 EA9394 paste

adhesive was used to bond the skin to the core. This paste adhesive layer was used

because the viscosity of the EA9396 resin used in the skins became so low during cure

that satisfactory filleting along the honeycomb cell walls could not be achieved. Two

different cores were used: one with a 6.35-mm (1/4-inch) cell size and one with a

4.76-mm (3/16-inch) cell size. It was felt that if skin dimpling indeed did occur and

caused a reduction in edgewise compression strength, the effect would be greater for a

larger cell size and lesser for a smaller cell size.

In the case of the cocured panels, the skins were impregnated in the

standard manner, as described in Appendix A. The bottom skin rested on a flat tool

surface while the upper skin was atop the core (and adhesive layer). The entire sandwich

assembly was bagged in accordance with the layup illustrated in Figure A. 1 except that

no caul plate was used. The cure cycle was the same as that described in Appendix A.

In the case of the secondarily bonded panels, the two skins were prepared

by the standard processing procedure described in* Appendix A. These were then bonded

to the core using a layer of EA9394 adhesive on a style 120 glass carrier fabric between

each skin and the core. The two skins were lightly sanded and wiped with solvent prior

to bonding to ensure a clean surface. The adhesive was cured for 1 hour at 93'C (200'F)

under vacuum bag pressure.

The cocured panels were 30.5 x 30.5 cm (12 x 12 inches) and three

specimens 7.6 x 22.9 cm (3 x 9 inches) were machined from each panel. The secondarily

bonded specimens were prepared individually in a 10.2 x 25.4-cm (4 x 10-inch)

dimension, then trimmed to the final specimen size. Individual specimens were

secondarily bonded because it was found that secondary bonding of large panels resulted

in disbonds. These were manifested as large blisters in the center of the panels. All

specimens, whether cocured or secondarily bonded, were oriented such that the fill fibers

in the fabric reinforced skins were in the length direction of the specimens.
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Table 39 summarizes the results of the edgewise compression tests. As

the data in Table 39 indicate, the cocured samples produced higher compression strengths

than the secondarily bonded samples, by around 15-20%. All of the secondarily bonded

samples failed by virtue of the skin debonding from the adhesive layer. All of the

cocured samples exhibited compressive failure of one or both skins and no debonding of

either skin from the adhesive layer. In addition to the failure modes described above,
most of the samples made with the lower density core, regardless of the type skin/core

bond, exhibited general buckling. No evidence of skin dimpling was observed on any of

the cocured panels.

3.10.2 Effect of Fillet Size on Flatwise Tensile Strength

Several preliminary attempts were made to prepare honeycomb sandwich
panels in which the EA9396 resin in the composite skins served simultaneously as the

skin-to-core adhesive. This proved generally unsuccessful because the viscosity of the
EA9396 resin became so low during cure that satisfactory filleting along the honeycomb

cell walls could not be achieved along the upper skin. Suitable fillets did form on the
lower skin because the resin from the upper skin ran down the cell walls and accumulated

along the lower skin-to-core interface. As a consequence, it was found that suitable

fillets, and a reasonable strength of the skin-to-core bond could only be achieved by the

addition of a layer of paste adhesive between the skins and core. As noted earlier in

Section 3.10.1, this paste adhesive layer consisted of a ply of style 120 glass scrim fabric
impregnated with EA9394 epoxy adhesive. This adhesive is a filled version of the

EA9396 resin system.

Since flatwise tensile strength of a sandwich construction is influenced by
the size of the fillets that are formed, the purpose of the investigation described in this

section was to determine how much the flatwise tensile strength is affected by various
fillet sizes. Fillet size was varied by applying different amounts of adhesive to the style

120 glass scrim cloth.

Table 40 summarizes the results obtained in this study. It includes data
for honeycomb panels made with no adhesive layer, with an adhesive layer along the top

skin only, and with an adhesive layer of various weights along both skins. It is evident

from the data in this table that the flatwise tensile strength increases as the amount of
adhesive, and the accompanying fillet size, are increased. There is a dramatic increase in

flatwise tensile strength as the amount of adhesive increases from zero to about
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0.08 gm/cm2 along the skin-core interface. Above this weight of adhesive application,

additional strength increases are achieved but at a much lower rate. Figure 10 illustrates

the relationship between adhesive application rate and resulting flatwise tensile strength

and the relationship between fillet size (or area of contact between adhesive and core cell

walls) and adhesive application rate. With no adhesive at all, the fillets result solely from

the EA9396 matrix resin in the sandwich skins, and the fillet size ranges from nearly zero

along the upper skin (0.1-0.3 mm by visual estimate) to approximately 0.3-0.5 mm along

the lower skin. In those cases where a layer of EA9394 adhesive was employed, the fillet

sizes ranged from approximately 0.5 mm for an adhesive application rate of

0.08 gm/cm 2 , to 1.5 mm for a rate of 0.21 gm/cm 2 , and 4 mm for a rate of 0.73 gm/cm 2 .

While it is evident that flatwise tensile strength levels can be raised

significantly by the use of large quantities of adhesive, and that without an adhesive layer

the strength levels are quite low, a point of diminishing returns is reached at adhesive

application rates in the vicinity of 0.1 gm/cm 2 . Above this level the increases in strength

that can be achieved may not be worth the weight penalty that accompanies it.

3.11 EFFECT OF SIZING ON GLASS FABRIC LAMINATES

Except for the work reported in this section, all of the glass-reinforced laminates

made and tested during this program had a Volan-A type fiber sizing. This fiber sizing

was used because it is the most commonly used fiberglass sizing and is epoxy-

compatible, even though it is not the most environmentally durable finish. It was felt

that there was a high likelihood of Volan-sized glass fabric being used in repairs, and the

data would therefore provide conservative numbers. The property levels delivered by

glass-reinforced laminates made with Volan-A sized fiber were listed in the various

tables in Section 3.2. It is evident from these data that very significant property losses

are encountered as a result of moisture absorption. Because of this substantial moisture-

induced property degradation, it was decided to prepare and test a limited quantity of

glass-reinforced laminates that incorporated a silane sizing rather than the Volan-A type

sizing.

Laminates using silane-sized glass fabric were prepared in the same manner as

those for which property data are reported in Sections 3.2.1, 3.2.3, and 3.2.4. The

standard processing procedure described in Appendix A was followed in the preparation

of these silane-sized laminates. Tensile, inplane shear and interlaminar shear properties

were generated from specimens machined from these laminates, and the results of these
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tests are presented in Tables 41-43. It is apparent from these tables that the silane-sized

fiber produces appreciably higher strength retention after wet aging than the Volan

sizing.

3.12 EFFECT OF NONBASELINE ENVIRONMENTAL EXPOSURE

The baseline environmental exposure condition utilized during this investigation

was a wet-aging exposure at conditions of 60'C (140'F)/100% R.H. until saturation was

achieved. This was followed by mechanical testing at -54'C (-65°F), 22°C (72'F), or

93°C (200'F). Two nonbaseline types of environmental exposure were carried out,

however, to assess durability of the repair material to various thermal environments.

These are described in the following two sections.

3.12.1 Elevated Temperature Exposure

The purpose of this test was to determine whether exposure to 177°C

(350'F) was detrimental to composite mechanical properties, specifically interlaminar

shear. This was of interest because a repair initially cured at 93 0C (2000F) might, at

some later date, be exposed to one or more 177°C (3500 F) cure cycles. Two exposure

levels, 2 hours and 16 hours at 177°C (350'F), were carried out. Interlaminar shear tests

were conducted after these exposures and the results are presented in Table 44. No

degradation is evident in the shear strength values for the glass reinforced material in

spite of the visual darkening that was evident. In the case of the graphite reinforced

material, the shear strengths after the 177°C (350'F) exposures are approximately 15%

lower than the baseline shear strength levels.

3.12.2 Exposure to Thermal Pulse

Both graphite and glass reinforced laminates were painted on one side

with a standard aircraft paint scheme in a dark gray shade. Some of these painted

laminates were humidity aged until saturated while some were stored in a desiccated

environment. After completion of the environmental exposure, these laminates were

exposed, on the painted side, to a thermal pulse by means of a quartz lamp bank. A

Mach 0.7 air flow was maintained over the laminates during the thermal pulse and the

laminates were not loaded.

After exposure to the pulse, the laminates were machined into

compression specimens and tested for residual strength. Tables 45 and 46 present the
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TABLE 41

LONGITUDINAL (WARP) TENSILE PROPERTIES OF A1100-SIZED
GLASS REINFORCED E-7781/EA9396 COMPOSITE MATERIAL

Fiber Test Ultimate Strength Tensile Modulus Ult. Strain
Test Condition Sizing Direction (MPa) (psi) (GPa) (10 psi) (10-6 in/in)

220 C(720 F), A1100 Warp 280.8 40,760 24.5 3.55 11,880
Dry
22-C (72°F), A1100 Warp 246.5 35,780 21.6 3.14 12,130
Wet(2)
93°C (200°F), A1100 Warp 170.6 24,760 18.8 2.73 9,520
Wet(2)

22°C (72°F), Volan (3) Warp 356.6 51,750 24.9 3.62 17,740
Dry
22°C (72°F), Volan (3) Warp 112.9 16,390 22.7 3.30 5,100
Wet
22°C (72°F), Volan (3) Fill 120.9 17,540 23.9 3.47 5,410
wet
93°C (200'F), Volan (3) Fill 93.3 13,540 20.7 3.01 4,470
Wet

(1) All average values represent five specimens.
(2) WET = wet aged at 600 C (140-F)/i00% R.H. until saturation.
(3) The Volan sized fiber panels represent the baseline data.

TABLE 42

IN-PLANE SHEAR PROPERTIES OF A1100-SIZED GLASS
REINFORCED E-7781/EA9396 COMPOSITE MATERIAL

In-Plane Shear Strength In-Plane Shear Modulus
Test Condition Fiber Sizing (MPa) (psi) (GPa) (106 psi)

22°C (72°F), Dry A1l00 65.6 9,520 4.38 0.635
22°C (72°F), A1l00 44.1 6,400 2.60 0.378
Wet (2)
93°C (200°F), A1100 25.8 3,740 0.90 0.131
Wet (2)

22°C (72°F), Dry Volan (3) 78.5 11,400 5.27 0.765
22C (72 0F), Wet Volan (3) 38.0 5,510 3.39 0.492
93 0C (2000F), Wet Volan (3) 18.9 2,740 1.67 0.243

(1) All values represent average of five specimens.
(2) WET = wet aged at 60'C (140'F)/100% R.H. until saturated.
(3) The Volan sized fiber panels represent the baseline data.
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TABLE 43

INTERLAMINAR SHEAR PROPERTIES OF Al 100-SIZED GLASS
REINFORCED E-7781/EA9396 COMPOSITE MATERIAL

Interlaminar Shear Str. Weight Gain
Test Condition Fiber Sizing (MPa) (psi) During Aging (%)

22°C (72°F), Dry A1100 42.4 6,150 N.A.
22C (72-F), A1100 29.4 4,260 2.69%
Wet (2)
93°C (200°F), A1100 12.7 1,840 2.68%
Wet (2)
22C (72'F), Dry Volan (3) 38.7 5,620 N.A.
22°C (72 0F), Wet Volan (3) 20.5 2,980 2.18%
93 0C (200 0F), Wet Volan (3) 11.8 1,710 2.15%

(1) All values represent average of five specimens. Four-point shear.
Tested at 8:1 span-thickness ratio.

(2) WET = wet aged at 60 0C (140 0F)/100% R.H. until saturation.
(3) The volan sizing fiber panels represent the baseline data.
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TABLE 44

EFFECT OF 177°C (350°F) CURE CYCLES ON INTERLAMINAR
SHEAR STRENGTH OF EA9396 COMPOSITE LAMINATES

Shear Strength(1,2) Weight Gain
Reinforcement Exposure Test During Aging

Type Condition Condition (MPa) (psi) (%)

"E"-778 1-Glass None (3) 22°C (72°F), 38.7 5620 N.A.
Dry
93°C (200°F), 11.8 1710 2.15
Wet (4)

2 hrs. @ 177°C 22°C (72°F), 38.9 5650 N.A.
(350°F) Dry

93°C (200°F), 13.3 1930 2.04
Wet (4)

16 hrs. @ 177°C 22C (72°F), 41.4 6010(5) N.A.
(350'F) (3 seg- Dry
ments of 6 + 93°C (200°F), 13.2 1920(5) 2.25
6 + 4 hrs) Wet (4)

T300-W133 None (3) 22°C (72°F), 39.3 5700 N.A.
Graphite Dry

93°C (200°F), 16.1 2340 2.20
Wet (4)

2 hrs. @ 177°C 22°C (72°F), 34.5 5000 N.A.
(350°F) Dry

200'F, Wet (4) 13.7 1990 2.35

16 hrs. @ 177°C 22°C (72°F), 36.2 5260 N.A.
(350'F) (3 seg- Dry
ments of 6 + 93°C (200°F), 13.2 1920 2.35
6 + 4 hrs.) Wet (4)

(1) Four-point shear (Graphite tests at 16:1 span-thickness ratio Glass tests at 8:1).
(2) Warp direction of fabric is running in length direction of specimens.
(3) The shear strength values listed for the no exposure condition represent the

baseline interlaminar shear strengths.
(4) WET = aging at 60'C (140'F)/95-100% R.H. until saturated.

(5) These glass reinforced specimens turned very noticeably darker after this
exposure. This darkening could not be noticed on the black graphite reinforced
specimens.
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results of these tests. The data in these tables indicate that the laminates used in the
thermal pulse tests were equivalent to the baseline laminates in the unpulsed condition
and that exposure to a thermal pulse resulted in relatively small decreases in compression

strength.
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SECTION 4

CONCLUSIONS

Based on the results obtained during the test program described in this report, the

following conclusions were drawn.

" Reproducible composite mechanical and physical property levels can be
achieved using the wet-layup impregnation and vacuum-bag curing
procedures described here.

"* With vacuum-bag cure pressure, the void content of cured composites is in the
vicinity of 5% by volume.

"* Batch-to-batch property values are quite consistent and reproducible.

"* Significant reductions in composite property levels occur with increasing
temperature over the range of -65°F to 200'F.

" The property levels of EA9396 composites reinforced with a Volan-A sized
glass fabric are significantly reduced when the composites become moisture
saturated. A silane-type sizing on the glass reinforcement provides markedly
better wet strength retention than the Volan-A type sizing and nearly
equivalent to that of the graphite reinforced composites.

" Measurements made during this program indicate that nominally complete
cure and peak property levels can only be achieved with elevated temperature
(180°F and up) curing.

"* 7he EA9396 resin system has a reasonable pot and work life at temperatures
up to I 00°F for use in repair.

"• The EA9396 resin system appears to have good storage stability, even at
elevated temperature.

"* Exposure of EA9396 composites to simulated 350'F cure cycles had no
adverse effect on mechanical properties.

* A high heat flux thermal pulse did not cause a major degradation in
compressive strength levels.
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APPENDIX A

STANDARD LAMINATE PROCESSING PROCEDURE

Most of the laminates prepared during this investigation were made by a

procedure designated the "Standard Procedure." This "Standard" laminate processing

procedure is described below, first in a general stepwise listing of the procedure, and then

in a more detailed description of each step. The general step-by-step procedure consisted

of the following.

(a) Cut fabric (total number of plies = P).

(b) Weigh or measure the total area of all the plies cut in step (a).

(c) Compute total amount of resin needed to impregnate fabric cut in step (a),
(see Table A.2).

(d) Weigh out and mix the total amount of resin needed. This is in the ratio of
100 parts A to 30 parts B by weight. A few grams extra should be allowed
since some resin will adhere to sides of mixing container (total weight of
mixed resin = W).

(e) Lay down first two plies of fabric, one atop the other.

(f) Weigh out an amount of mixed resin equal to 2.5 W/P. Pour this resin on top
of the second ply and manually spread it over the entire surface as uniformly
as possible.

(g) Lay down two more plies on top of the two in steps (e) and (f). Manually
tamp these down so that the resin applied in step (f) is soaking into these two
new plies.

(h) Weigh out an amount of mixed resin equal to 2 WIP. Pour this resin on top
of the last ply and manually spread it over the entire surface as uniformly as
possible.

(i) Do steps (g) and (h) a total of P-4/2 times.

(j) Lay down the last two plies of fabric on top of the previously impregnated
plies.

(k) Lay down an amount of mixed resin equal to 1.5 W/P. Pour this resin on top
of the last ply and manually spread it over the entire surface as uniformly as
possible.

(1) Bag the layup in general accordance with Figure A. 1.

(m) Cure the laminate in accordance with the standard cure cycle.
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Each of the steps listed above, and the relevant rationale is described in detail below.

(a) The graphite (W133) and glass (7781) fabrics were cut to the size needed for

the laminate being made. In this investigation, laminate sizes varied depending on the

type and number of specimens that were required from the laminate. Table A. 1 lists the

thicknesses and dimensions used for the laminates prepared in this investigation.

(b) The amount of fabric used for each laminate was weighed. Alternatively, if

a scale is not available, the total area of all the plies used for a laminate could be

determined by measuring the dimensions of each ply.

(c) The amount of resin needed for the laminate being prepared depends on how

much fabric needs to be impregnated. After some initial experimentation, we settled on

using a 50% excess to provide for flow and bleed and to provide sufficient resin to allow

uniform wet out of plies during the hand layup operation. Table A.2 lists the ratio of

resin to fabric, on both a weight and area basis, that was used during laminate layup.

(d) Quantities of resin mixed for laminate preparation in this program ranged

from around 50-60 grams for the smallest panels to 800-900 grams for the largest. In the

case of the largest quantities, as many as three separate mixing containers were used

(-300 grams each). This was done both to minimize the chance of a premature

exotherm/gel and because larger mixing containers were not readily available. Between

5 and 10 grams of extra resin, beyond the quantities determined in step (c), were mixed

in each mixing container to allow for the fact that some of the resin would be left behind

on the container walls after impregnation.

(e) The actual impregnation process was performed on an 0.16 mm (0.063 inch)

thick aluminum sheet coated with Frekote 44 release agent. Two dry plies of

reinforcement were laid down atop one another on the aluminum sheet. Care was taken

to keep track of the warp and fill direction of each ply of fabric so that the warp fibers

were all aligned in the same direction for every ply. In addition, because both the W133

graphite and 7781 glass fabrics were 8-harness satin weaves, the predominant fiber

direction on one side of the fabric was in the warp direction while on the other side it was

in the fill direction. The plies were stacked such that the plies in the lower half of each

laminate had the warp face down while the plies in the upper half had the warp face up.

This ensured symmetry about the laminate midplane.
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(f) The amount of resin poured onto the top of the first two plies laid down in

step (e) was 2.5 W/P, where W represents the total weight of the resin computed and

mixed in step (c) and P represents the total number of plies in the laminate being

prepared. After addition of this resin to the first two plies, it was manually spread over

the entire ply surface as uniformly as possible using a plastic spatula.

(g) This step is straightforward and requires no further elaboration.

(h) It will be noted that the amount of resin to be applied in this step (2 W/P) is

less than the amount applied to the first two plies (2.5 W/P) in step (f). The reason for

this is that since the intermediate plies pick up resin from the bottom, from previously

impregnated plies, not as much resin needs to be added to these intermediate plies as to

the first two plies, which do not pick up resin from below.

(i) The thinnest laminates made in this investigation were 8-ply except for those

used as skins on honeycomb sandwich. For this case, steps (g) and (h) would be done a

total of two times ([8-4]/2 = 2). For a 16-ply laminate, steps (g) and (h) would be done a
total of six times. For a 4-ply laminate, steps (g) and (h) would not be done at all

([4-4]/2 = 0).

(j) This step is straightforward and requires no further elaboration.

(k) Again, it will be noted that the amount of resin applied in this step (1.5 W/P)

is less than that applied in previous steps (f) and (h). The reason for this is that since

these last two plies do not give up any resin to succeeding plies, but do gain resin from
previously impregnated plies, not as much resin needs to be added to these top plies.

(1) In this investigation a Zip-Loc reusable vacuum bag system was used for

laminate cure. The bleeder material used in the "standard" processing procedure being
described here was Mochburg CW1850 (-71 gm/r 2 ). Table A.2 lists the number of

bleeder plies that were used, relative to the number of plies of reinforcement in the
laminate being cured. After completion of the layup and closing of the lid, the unit was

placed in a circulating air oven, and a vacuum was drawn to verify that a good seal was

present before heating commenced.

(m) The "standard cure cycle" consisted of curing the laminate for 45 minutes at

93°C (200'F) under vacuum pressure. The laminate was subjected to a nominal vacuum
of 635 mm (25 inches) Hg before the oven was turned on. In the oven used, the
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temperature of the circulating air reached 93°C (200'F) in approximately 3-4 minutes

while the laminate in the vacuum bag reached 93°C (200'F) in about 50 minutes.

Figure A.2 illustrates a typical heat-up curve for a Iminate during a vacuum bag cure in

the oven. The 45-minute cure period was started when the laminate temperature, as

indicated by a thermocouple inside the vacuum bag, reached 90.5°C (195°F). At the

conclusion of the 45-minute cure, the oven heaters were turned off, the door was opened,

and the circulating air fan was left on. The vacuum was left on the laminate during

cooldown. Cooldown time varied from as little as 1 hour to overnight, depending on

time of day and oven schedule.
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TABLE A. 1

LAMINATE THICKNESSES AND DIMENSIONS

Type Reinforcement
7781 Glass W133 Graphite

Size Range Size Range

ype Test Thickness(l) (cm) [in] Thickness(l) (cm) [in]

Tension 8 ply max. (51 x 51) 8 ply (51 x 51)

(D3039) [20 x 20] [20 x 20]
min. (35.5 x 51)

[14 x 20]

Compression 16 ply max. (51 x 51) 12 ply max. (51 x 51)

(D3410B) [20 x 20] [20 x 20]
min. (23 x 43) min. (23 x 43)

[9 x 17] [9 x 17]

45' Tension/ 8 ply max. (51 x 51) 8 ply max. (51x 51)

Inplane Shear [20 x 20] [20 x 20]

(D3418) min. (30.5 x 51) min. (30.5 x 51)
[12 x 20] [12 x 20]

Interlaminar 16 ply max. (51 x 51) 12 ply max. (30.5 x 30.5)

Shear (Four- [20 x 20] [12 x 12]

Point Shear) min. (12.7 x 20.3) min. (12.7 x 20.3)
[5 x 8] [5 x 8]

Bearing (MIL- 8 ply (30.5 x 35.5) 8 ply (30.5 x 35.5)

HDBK-17) [12 x 14] [12 x 14]

Flatwise --- 2 ply (15.2 x 15.2)
Tension (2) [6 x 6]
(C297)

Edgewise 4 ply (3.3 x 35.5) 2 ply (33 x 35.5)

Compression [13 x 14] [13 x 14]
(2) (C364)
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TABLE A.2

EA9396 BASELINE LAMINATE FABRICATION PARAMETERS

Reinforcement Type
Parameter W133 Gr Fabric 7781 GI Fabric

Grams of Mixed Resin Per Gram of 0.755 0.555
Reinforcement Used During Impregnation

-or-
Grams of Mixed Resin Per Unit Area of 0.178 gm/in2  0.104 gm/in2

Reinforcement(l) Used During 0.0276 gm/cm 2  0.0161 gm/cm 2

Impregnation

Plies of Mochburg CW1850 Bleeder (71 0.40(2) 0.25(2)
gm/m 2 ) Per Ply of Reinforcement

Cure Schedule 45 minutes at 93°C (200'F) under vacuum
pressure (-125 mm Hg abs. pressure)

(-25 inch Hg vac.)

(1) Total area of all reinforcement plies, not area of laminate. The values listed
correspond to the mass/mass ratios listed directly above for the respective
graphite and glass fabrics used. These two reinforcing fabrics are described in
Table 1 and have the following weight per unit areas:

W133 - 0.236 gm/in 2

7781 - 0.190 gn/in2

(2) Round off to the next higher whole number if the calculated number of bleeder
plies is a fraction.
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APPENDIX B

NONSTANDARD LAMINATE PROCESSING PROCEDURES

Quite a few laminates prepared during this investigation were not made in
accordance with the "Standard Procedure" described in Appendix A. The processing

procedures for these nonstandard laminates were varied in order to determine the effect

of processing variations that might occur in field repair situations on resulting

mechanical and physical laminate properties.

The processing variations described in this Appendix are subdivided into six
categories and each is addressed respectively in Sections B. 1-B.6.

B. 1 NONSTANDARD CURE TIME/TEMPERATURE

In Section 3.5.2, the effect of cure time and temperature on interlaminar shear
strength was discussed. Five graphite reinforced laminates were prepared using different
cure conditions than those described in step (m) of Appendix A. Except for this

difference in cure condition, all five of these laminates were prepared in accordance with
the "Standard Procedure" described in Appendix A. Table B. 1 identifies the five
laminates cured at alternative times/temperatures and lists the time/temperature history

used for each.

B.2 NONSTANDARD CURE VACUUM PRESSURES

In Section 3.5.3, the effect of vacuum bag vacuum pressure level during cure on
interlaminar shear strength was discussed. Four glass reinforced laminates were prepared

using different vacuum pressure levels than that noted in step (m) of Appendix A.
Except for this difference in vacuum pressure level, all four of these laminates were

prepared in accordance with the "Standard Procedure" described in Appendix A.
Table B.2 identifies the four laminates cured under alternate vacuum pressure levels and

lists the vacuum level used.

B.3 NONSTANDARD FIBER CONTENT

In Section 3.8, the effect of fiber content on mechanical properties was discussed.
Both glass and graphite fabric reinforced laminates were prepared with fiber contents
ranging from the standard 55% by volume down to as low as 34% by volume. All these

low fiber content laminates were cured by the "Standard" cure cycle described in step
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(m) of Appendix A. The differences in fiber content were achieved by changing either

the bleeder ply/reinforcement ply ratio used during cure, or the ratio of resin to

reinforcement used during impregnation. Other than these differences, the laminate

processing was identical to that described in Appendix A. Table B.3 identifies the

laminates for which either the bleeder or resin ratios were varied and lists the particular

details for each.

B.4 NONSTANDARD PLY IMPREGNATION PROCEDURES

Section 3.9.1 discusses alternative ply impregnation procedures that were

investigated. The two alternate impregnation procedures that were investigated were felt

to be representative of procedures that might be employed by repair personnel working in

the field.

Laminate No. BIL-GL-14

The first variation consisted of applying resin to every ply instead of every other

ply, as in the "Standard Procedure" described in Appendix A. The difference between

this nonstandard procedure and the standard procedure was in steps (e)-(j) of Appendix

A. Instead of the procedure described in steps (e)-(j) the procedure outlined below was

followed.

(e) Lay down the first ply of fabric.

(f) Weigh out an amount of mixed resin equal to W/P. Pour this resin on top of

the first ply and manually spread it over the entire surface as uniformly as

possible.

(g) Do steps (e) and (f) a total of P times.

After step (g) was completed, the procedure reverted to steps (1) and (m) of Appendix A.

Laminate No, BIL-GL-16

The second variation consisted of using a smaller quantity of resin during

impregnation of the reinforcement than the 50% excess used in the "Standard Procedure"

described in Appendix A. This smaller quantity of resin represented 0% excess (net resin

content). Further, since no excess resin was used, no bleeder plies were used during

cure.
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Thus the differences between the "Standard Procedure" described in Appendix A,

and that used for this laminate, occurred in step (c) (and by reference, Table A.2) and in

step (1) (and by reference, Figure A.1). The resin ratio used for glass reinforced

laminates in the "Standard Procedure" was 0.555 gm resin/gm reinforcement. In

laminate BIL-GL-16, the ratio was 0.377 instead. In addition, the bleeder ratio used for

glass reinforced laminates in the "Standard Procedure" was 0.25 plies of bleeder/ply

reinforcement (Table A.2). In laminate BIL-GL-16, no bleeder plies were used at all.

B.5 NONSTANDARD BLEEDER MATERIAL

Section 3.9.2 discusses the use of alternative bleeder materials to the Mochburg

CW1850 bleeder used in the "Standard Procedure" of Appendix A. Three glass and two

graphite reinforced laminates were prepared using alternative bleeder material. The three
glass laminates were made using the E-7781 glass fabric as bleeder while the two

graphite laminates were made using the T300-W133 graphite fabric as bleeder. Other

than this difference in bleeder material, the laminate processing was identical to the

"Standard Procedure" described in Appendix A. Table B.4 identifies the laminates made
with the nonstandard bleeder material, the applicable bleeder ratios that were used, and

the resin absorption characteristics of the alternative materials.

B.6 NONSTANDARD BAGGING SCHEMES

Section 3.9.3 discusses the investigation of several laminate bagging schemes that
varied from the standard scheme illustrated in Figure A. 1. The goal of each of these

variant bagging schemes was to improve laminate quality by reducing void content

below that normally resulting from a vacuum bag cure (see Table 4). The two variant

bagging schemes described in this section were felt to be readily usable in the field.

Each is discussed separately below.

Perforated Barrier Film

The first approach was to perforate the normally non-porous barrier between the

bleeder material and the breather material. It will be observed in Figure A. 1 that in the

standard bagging scheme, this nonporous barrier consists of a caul plate sandwiched

between two sheets of nonporous teflon-coated glass. The purpose of the teflon-coated

glass is to keep excess resin absorbed in the bleeder plies from being absorbed into the

breather, where it might clog the vacuum paths and prevent full vacuum pressure from

being uniformly exerted on the laminate surface. The purpose of the caul plate is to
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prevent inadvertent wrinkles that may develop in the vacuum bag from imprinting the

laminate surface and to prevent the vacuum bag from drawing down more tighly around

the laminate edges than in the center, thereby producing nonuniform thickness. In the

modified bagging scheme, the two layers of nonporous teflon-coated glass and the caul

plate were replaced by a single layer of the teflon-coated glass that had been perforated

with a series of knife slits. Figure B. 1 illustrates this bagging scheme.

The rationale for investigating this type of bagging scheme was that perforations

in the film between the bleeder and breather materials would permit the vacuum to draw

air out of the bleeder instead of forcing it into the laminate layup. It was speculated that

air might be trapped in the bleeder when the vacuum was applied because the caul plate

would be pressed down so tightly that air escape paths would be shut off.

Other than the altered bagging scheme illustrated in Figure B. 1, the processing of

the laminate made with this procedure, BIL-GL-39, was identical to the "Standard

Procedure" described in Appendix A.

Double-Bag

The second nonstandard bagging scheme that was investigated was the use of a

double vacuum bag rather than the single bag scheme illustrated in Figure A. 1. The

rationale for this was that while the vacuum applied in the single bag scheme supposedly

aids in drawing air and volatiles out of the laminate, the compaction of the layup

resulting from the vacuum bag may pinch off escape paths and trap air and volatiles in

the layup. The idea of a double bag scheme is that this approach permits the layup to

"breathe" even while under vacuum by reducing the compacting force during the early

part of the cure cycle. The double bag arrangement is illustrated in Figure B.2. An

essential element of this arrangement is the "hardback" shell that holds the outer vacuum

bag off the inner vacuum bag, thereby allowing the compacting force on the layup to be

reduced during the early part of the cure cycle while simultaneously imposing a vacuum

on the layup to draw off air and volatiles.

In using the bagging scheme illustrated in Figure B.2, a different cure cycle than

that described in step (m) of Appendix A was followed. The cure cycle for the double-

bag cure was as follows:
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1. Draw a vacuum (23-24 in Hg) on the shell (#2).

2. Draw a vacuum (-25 in Hg) on the inner bag (#1).

3. Hold these two vacuum levels for 30 minutes at 22'C (72TF).

4. Vent line #2 to the atmosphere while maintaining full vacuum (-25+ in. Hg)
on line #1.

5. Heat to 93'C (200TF).

6. When the temperature in the inner bag reaches 91°C (195°F), start a 45-
minute hold, maintaining full vacuum on line #1.

7. Cool to 49°C (120TF) or less while maintaining full vacuum on line #1.

8. Remove.
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TABLE B. 1

LAMINATES CURED AT NONSTANDARD TIMES/TEMPERATURES

Cure Temperature
Laminate Number (°C) (OF) Cure Time

"STANDARD" 93 200 45 minutes under vacuum

BIL-GR-5 107 225 45 minutes under vacuum
BIL-GR- 1 93 200 30 minutes under vacuum
BIL-H7-5 82 180 30 minutes under vacuum

BIL-GR-4R 79 175 45 minutes under vacuum
BIL-GR-20 22 72 4 hours under vacuum +

7 days at ambient conditions +
3 months in either dry ambient
storage or in 60'C (140'F), 95-

100% R.H. humidity cabinet

TABLE B.2

LAMINATES CURED UNDER NONSTANDARD VACUUM PRESSURE

Vacuum Bag Pressure Level During Cure
Laminate Number (mm Hg Vacuum) (in. Hg Vacuum)

"STANDARD" 635 25

BIL-GL-27 254 10
BIL-GL-28 406 16
BIL-GL-29 584 23
BIL-GL-38 686 27

B-6



TABLE B.3

LAMINATES PREPARED WITH NONSTANDARD BLEEDER
PLY IN RESIN RATIOS

Bleeder Ply/Reinforcement Resin/Reinforcement
Ply Ratio (1) (plies Ratio (1) (gm resin/

Laminate Number bleeder/ply reinforcement) gm reinforcement)

GRAPHITE
"Standard" 0.40 0.755

BIL-GR-51 0.42 0.548
BIL-GR-52 0.42 0.787
BIL-GR-53 0.33 1.000
BIL-GR-54 0.25 1.160
BIL-GR-79 0 1.150
BIL-GR-84 0.083 1.115

GLASS
"Standard" 0.25 0.555

BIL-GL-10 0.25 0.755
BIL-GL-31 0.375 0.555
BIL-GL-33 0.25 0.706
BIL-GL-53 0 1.000
BIL-GL-54 0.125 1.000

NOTE:
(1) See Table A.2 (Appendix A) for baseline laminate fabrication parameters.
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APPENDIX C

LAMINATE PHYSICAL PROPERTIES

The laminate physical properties for all of the glass and graphite reinforced

laminates prepared and evaluated during this investigation are listed in this Appendix.

Each property value listed represents an average of three replicate determinations from

various locations within the same laminate.

The data are organized generally as follows:

Baseline Laminates

Laminates Processed at Nonbaseline Temperatures or Pressures

Laminates Prepared from Stored Resin

Laminates Prepared with Variable Fiber Content

Laminates Prepared with Alternate Impregnation and Bagging Schemes

Laminates Prepared with Silane Sized Glass Reinforcement

Laminates Prepared for Nonbaseline Environmental Exposure

This sequence corresponds to the sequence in which these various types of laminate,
processing and test variables are discussed in Section 3 of the text.

The laminate number listed in the first column of Tables C. 1 (graphite reinforced
laminates) and C.2 (glass reinforced laminates) corresponds to the individual specimen

numbering system that appears in the appendices to follow.
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APPENDIX D
INDIVIDUAL SPECIMEN TENSION PROPERTIES, BASELINE

The 48 tables in this appendix present the detailed mechanical property test data
measured during this program for each baseline specimen tested in tension. A summary

of these data was presented and discussed in Section 3.2.1.
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APPENDIX E

INDIVIDUAL SPECIMEN COMPRESSION PROPERTIES, BASELINE

The 48 tables in this appendix present the detailed mechanical property test data

measured during this program for each baseline specimen tested in compression. A

summary of these data was presented and discussed in Section 3.2.2. Two types of

compressive failure modes are referred to in this Appendix. Figure E. I illustrates the

type of failure behavior associated with each verbal description.

Shear Shear
Crimping Fracture

Figure E.1. Types of Compressive Failure Modes Observed.
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APPENDIX F
INDIVIDUAL SPEC vAEN :450 TENSION/INPLANE SHEAR

PROPERTIES, BASELINE

The 36 tables in this appendix present the detailed mechanical property test data
measured during this program for each baseline specimen tested in inplane shear. A
summary of these data was presented and discussed in Section 3.2.3.
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APPENDIX G

INDIVIDUAL SPECIMEN INTERLAMINAR SHEAR PROPERTIES, BASELINE

The 18 tables in this appendix present the detailed mechanical property test data

measured during this program for each baseline specimen tested in interlaminar shear. A

summary of these data was presented and discussed in Section 3.2.4.
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APPENDIX H
INDIVIDUAL SPECIMEN BEARING PROPERTIES, BASELINE

The four tables in this appendix present the detailed mechanical property test data
measured during this program for each baseline specimen tested in bearing. A summary
of these data was presented and discussed ir Section 3.4.
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APPENDIX I

INDIVIDUAL SPECIMEN GLASS TRANSITION
TEMPERATURE MEASUREMENTS

This appendix presents the results of the glass transition temperature (Tg)

measurements on each individual specimen. The specimens were in the form of neat
resin castings with approximate dimensions of 22 x 13 x 2 mm (7/8 x 1/2 x 1/16 inch).

The measurements were performed by dynamic mechanical analysis (DMA) at a heating

rate of 0.5°C/minute. Glass transition temperature was taken from the peak of the log E"

(loss modulus) vs. temperature curve. The tests were performed on a DuPont Model 983

DMA. Table 1. 1 summarizes the individual results and Figures 1. 1-1. 18 illustrate the

DMA curves for each specimen. The curves for specimen Nos. 1-2 (1.1) and 1-1 (1. 10)

are labelled to indiciate the location at which the Tg was identified for the dry and 'vet

test conditions.
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TABLE I. 1

INDIVIDUAL SPECIMEN GLASS TRANSITION TEMPERATURE

Specimen Batch Test Wt. Gain Glass Transition Temp.(2)
Number Number Condition (%) (1) ,(C) (OF)

1-2 1 Dry tN.A. 174 345
1-4 1 Dry N.A. 176 349
1-6 1 Dry N.A. 175 347

Avg. 175 347
Std. Dev. 1.0 2.0

2-2 2 Dry N.A. 176 349
2-4 2 Dry N.A. 176 349
2-6 2 Dry N.A. 177 351

Avg. 176 350
Std. Dev. 0.6 1.0

3-2 3 Dry N.A. 177 351
3-4 3 Dry N.A. 178 352
3-6 3 Dry N.A. 176 349

Avg. 177 351
Std. Dev. 1.0 1.5

1-1 1 Wet 9.2 107 225
1-3 1 Wet 9.1 106 223
1-5 1 Wet 9.1 106 223

Avg. 106 224
Std. Dev. 0.6 1.0

2-1 2 Wet 8.7 108 226
2-3 2 Wet 8.6 111
2-5 2 Wet 8.9 106 223

Avg. 108 227
Std, Dev. 2.5 4.6

3-1 3 Wet 8.8 109 228
3-3 3 Wet 8.9 107 225
3-5 3 Wet 8.7 105 221

Avg. 107 225
Std. Dev. 2.0 3.5

NOTES: (1) After aging at 60'C (1404") and 95-100% R.H. until saturated.
(2) Specimens cured for 45 minutes at 93'C (200'F).
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APPENDIX J

INDIVIDUAL SPECIMEN INTERLAMINAR SHEAR
STRENGTHS, EFFECT OF CURE TIME/TEMPERATURE/

PRESSURE VARIATIONS

The six tables in this appendix present the detailed interlaminar shear strength

data for specimens prepared with nonstandard cure schedules. These nonstandard cure

schedules involved curing at temperatures and vacuum pressures both above and below

the baseline levels of 930 C (2000 F) and 635 mm (25 in.) Hg, respectively, or for other

than the standard cure time of 45 minutes. A summary of these data was presented and

discussed in Section 3.5.2.
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APPENDIX K
INDIVIDUAL SPECIMEN INTERLAMINAR SHEAR STRENGTH,

EFFECT OF EXPOSURE TO 177 0C (350 0F)

The two tables in this appendix present the detailed interlaminar shear strength

data for specimens exposed to 1771C (3500F). A summary of these data was presented

and discussed in Section 3.12.1.
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APPENDIX L

INDIVIDUAL SPECIMEN INTERLAMINAR SHEAR STRENGTH,
EFFECT OF RESIN/FIBER CONTENT

The 12 tables in this appendix present the detailed interlaminar shear strength

data for specimens prepared with nonstandard fiber contents. All of the laminates from

which these specimens were machined were cured in accordance with the baseline cure

schedule. The reduced fiber contents were achieved by varying the resin/reinforcement

ratios during impregnation and the bleeder ratio during bagging. The laminate

preparation details were described in Appendix B.3. A summary of these data was

presented and discussed in Section 3.8.
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APPENDIX M
INDIVIDUAL SPECIMEN PROPERTIES, EFFECT OF

STORAGE TIME AND TEMPERATURE

The tables and figures in this appendix present the detailed mechanical, physical,
thermophysical, and chemical property data measured during this program. The data

include HPLC spectra, viscosity measurements on both parts A and B, DSC analyses,

FTIR spectra, Rheometrics viscosity profiles, and interlaminar shear strengths. Each of
these specific types of data are presented separately in sections M. I through M.6 of this

appendix. These data are summarized in Section 3.7.

M. I HPLC SPECTRA

Figures M. I through M.6 present the HPLC spectra obtained during the program.
It can be seen from Figures M. I (b) that part B of the EA9396 resin system produced no
significant features. As a result, no further HPLC tests were performed on part B.
Table M. I summarizes the pertinent features and test parameters for each of the tests
represented by Figures M. 1 through M.6. It will be observed, both in Figures M.4 and

M.6 as well as in Table M.1, that the retention times for the 12- and 24-month tests are
about twice what .hey are in the other tests. This is due to the fact that the flow rate
during the test was only half what it was in the other tests, thereby doubling the retention

times.

In each case the test samples were prepared for analysis by making a 1% solution

by weight in dioxane and filtering the solution through a 0.5-micron PTFE filter to

remove insolubles.

M.2 BROOKFIELD VISCOSITY MEASUREMENTS

Viscosity measurements were made on both parts A and B of the EA9396 resin

system using a Brookfield type RV Viscometer. This viscometer comes with a set of

seven spindles to cover a wide range of viscosities. Spindle No. 7 was used for viscosity
measurements of Part A, while Spindle No. 3 was used for Part B.

The samples that were tested were tested in the cans they were received in from
Hysol. In the case of Part A, this was a quart can, while Part B was in a pint can. In
each case the cans were not large enough to accommodate the spindle guard so this was

removed during the viscosity measurements. While this is not in strict accordance with
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the recommended procedure, since all of the tests were performed in the same way, the
measurements do provide a consistent comparison of the material for each aging time

from its initial receipt until the final measurement after 36 months of storage. In all

cases the spindles were immersed to the recommended depths. Table M.2 lists the results

of all the viscosity measurements made on both Parts A and B. These results were

summarized and discussed in Section 3.7 (see Table 31 in particular).

M.3 HEAT OF REACTION TESTS (DSC)

Dynamic scanning calorimetric (DSC) tests were conducted on EA9396 in the as-

received condition and after storage times of up to 24 months at various temperatures.
From these tests the heat released during cure is obtained. Resin samples of

approximately 5 mg were heated at a rate of 10°C (18°F)/min in these tests. Figures M.7
through M.22 present the DSC curves from each of these tests and the heat release during

cure in these tests is tabulated in Table M.3.

If one considers only the heat release data for the 6-24 month storage times, there

is a relatively consistent decrease in heat release as aging time increases and the decrease

is greatest for the highest temperature storage condition.

M.4 FTIR SPECTRA

Figures M.23 through M.54 present the FTIR spectra obtained during the
program. The tests were carried out using a Nicolet FTIR instrument. Spectra were

obtained on both Parts A and B of the EA9396 resin system after storage times of up to
24 months at various temperatures. Samples were deposited on NaCI plates to perform

the MRR tests. No attempt has been made to interpret these spectra.

M.5 RHEOMETRIC VISCOSITY PROFILES

A Rheometrics Solids Analyzer (RSA-II) was used to measure the changing

viscosity of EA9396 during cure. The test was carried out using approximately 0.1 gm
samples in a parallel plate arrangement. The plates were positioned about 0.36 mm apart

and oscillated at a frequency of 1 Hz. The motion of the plates was to slightly open and
close in a tensile mode rather than to rotate with respect to one another in a torsional

mode. The amount of motion represented a cyclic strain of 1.0% (±0.0036 mm) about

the midpoint.
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Both dynamic viscosity (fl') and lc ss viscosity (ri") were measured in these tests.

Since the dynamic viscosity is the rP ost commonly used measure of material viscosity,

only these charts are included in this section. Several points should be cited in regard to

these data. First, the viscosity values plotted in the accompanying charts are not

quantitative. The parallel plate arranigenment was a novel way to use the RSA instrument.

Normally the tests are carried out using a shear sandwich type arrangement. The low

viscosity of the EA9396 system preCludei usc oi the shear saidwich arrangement

because the minimum gap setting was 0.5 mm and the material ran out of the fixture
during the test. While the parallel plate approach wz', nonstandard, the viscosity vs.

temperature curve wa,. very similar to that obtained with the shear sandwich fixture. For

this reason it is felt that so long as all of the tests were carried out in the same manner,

comparisons of test results would be vaid (i.e., temperatures at which minimum
viscosity and gel occur). Second, due to compliance limitations of the RSA instrument,

data recorded after gel are meaningless.

Figures M.55 through M.70 present dhe viscosity profiles obtained after various

storage times up to 2 years and at storage temperatures up to 490 C (120 0 F). Pertinent

features from these figures were listed in Table 29 of Section 3.7.

M.6 INTERLAMINAR SHEAR STRENGTH

Tables M.4-M. 19 list the individual specimen interlaminar shear strength

properties of laminates made with EA9396 resin that had been in storage for up to two

years at temperatures up to 490C (120°F). These data are summarized and discussed in

Section 3.7 (Table 32 in particular).

M-3



TABLE M. 1

HPLC TEST PARAMETERS AND RESULTS

Retention Time (min.)
Sample Flow Rate Solvent 22-C (72 0F) 38-C (lOO°F) 490 C (120 0 F)

Ag (rnl/min) Gradient (1) Storage Storage Ctoraize

Initial 1.0 A 18.88 ---

1 Month 1.0 A 18.48 18.44

6 Months 1.0 A 20.14 20.16 21.15

12 Months 0.5 A 39.24 (2) 37.68 (2) 37.92 (2)

18 Months 1.0 A 18.73 18.43 18.81

24 Months 0.5 B 40.87(2) 41.22(2) 41.36(2)

NOTE:

(1) A: Ii2 % •Wa% r

0 00 50
10 50 50
40 30 70
50 30 70

B: 50% Water/50% Dioxane throughout test.

(2) These retention times are higher than the others by a factor of 2 because the flow
rate during the test was half the flow rate in the other tests. This caused the
retention times to be doubled. Thus, these test results are equivalent to those
obtained for the other sample ages.
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TABLE M.2

BROOKFIELD VISCOSITY MEASUREMENTS ON EA9396
AS A FUNCTION OF STORAGE TIME AT

VARIOUS TEMPERATURES

Date of Storage Storage Temperature Viscosity (Poise)
Measurement Time(l) QC (E) Part A Part B

11/9/88 As received N.A. 840 1

12/19/88 1 month 38 100 840 0.75
49 120 880 0.75

2/9/89 3 months 22 72 920 1

5/16/89 6 months 22 72 720 1

7/20/89 8 months 38 100 840 1
49 120 880 1

11/16/89 12 months 22 72 720 1
38 100 960 1
49 120 1000 I

5/16/90 18 months 22 72 1120 1
38 100 1080 0.9
49 120 2380 0.9

8/22/90 21 months .49 120 3440 0.75

11/17/90 24 months 22 72 820 1
38 100 840 1
49 120 6500 1

5/16/91 30 months 22 72 776 ---
38 100 2340 ---
49 120 >20,000(2) ---

11/15/91 36 months 22 72 800 -
38 100 4600 ---

6/15/92 43 months 22 72 1000 ---
38 100 >20,000 (2) ---

1/7/93 50 months 22 72 1000
1 38 100 (3) ---

NOTES:
(1) Storage times are nominal, after receipt of material. Material was manufactured

three months before receipt.
(2) This material was no longer processible into laminates and further storage was

discontinued.
(3) Material had hard crust on surface.
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TABLE M.3
EFFECT OF LONG-TERM STORAGE ON HEAT

RELEASE DURING CURE

Heat Release During Cure (J/Rm)
220 C (72 0F) 38-C (1000 F) 49*C (120 0 F) Average of All

Storage Time Storage Storage Storage 3 Temperatures

1 Month 576.2 588.8 576.4 580.5

3 Months 572.9

6 Months 633.8 593.5 624.6 617.3

12 Months 613.4 589.5 601.6 601.5

18 Months 615.4 564.6 586.8 588.9

24 Months 599.6 575.6 560.6 578.6
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(a) Part A

.. J'IIl - - I __ L 1_

I'I " I "T • I I '"

(b) Part B

Figure M.1. Initial HPLC Spectra for EA9396 Parts A and B.
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(a) Stored 1 month at 38°C (100°F).

(b) Stored 1 month at 49%C (120'F).

Figure M.2. HPLC Spectra for EA9396, Part A After One Month Storage.
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(a) Stored 6 months at 22%C (72°F).

.1.::

U-

(b) Stored 6 months at 38'C (100'F).

(c) Stored 6 months at 49°C (120'F).

Figure M.3. HPLC Spectra for EA9396, Part A After Six Months Storage.
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- tQ.

(a) Stored 12 Months at 22°C (720F). (b) Stored 12 Months at 38 0C (100°F).

(c) Stored 12 Months at 49 0 C (120 0F).

Figure M.4. HPLC Spectra for EA9396, Part A After 12 Months Storage.
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M to,

El. -

(a) Stored 18 months at 228C (72 0F).

(b) Stored 18 months at 38%C (100'F).

(c) Stored 18 months at 49'C (120'F).

Figure M.5. HPLC Spectra of EA9396, Part A After 18 Months Storage.
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30

(a) Stored 24 months at 220 C (720 F).

'-U

(b) Stored 24 months at 380C (1000F).

Cuj

= -4

(c) Stored 24 months at 490C (120 0F).

Figure M.6. HPLC Spectra of EA9396, Part A After 24 Months Storage.
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APPENDIX N

INDIVIDUAL SPECIMEN HONEYCOMB FLATWISE TENSILE PROPERTIES,
EFFECT OF ADHESIVE FILLET SIZE

When honeycomb sandwich constructions are pulled apart in a flatwise tension

mode, the limiting strength is that of the core. Heavier core, with smaller cell size and

higher cell wall thickness obviously requires higher loads to tear the core than lighter

core. The strength of the core however does not necessarily determine the flatwise

tensile strength of a honeycomb construction. Failure may occur at lower loads than that

required to fail the core because a variety of other failure modes can occur. Some of

these alternative failure modes include debonding of the adhesive from the facing shin,

debonding of the adhesive fillets from the core cell walls, cohesive failure within the

adhesive itself, or, in the case of composite skins, delamination of the facing skins.

Whichever of these various locations is the "weakest-link-in-the-chain" will fail first.

Probably the most common of these alternative failure modes is the failure of the

bond between the adhesive fillets and the core cell walls and the leading reason for this is

inadequate fillet size. It is intuitively obvious that as the adhesive fillet size increases,

and concurrently the area of the fillet-cell wall bond increases, this "link-in-the-chain"

will become stronger and failure loads will increase until the strength of the next weakest

link in the chain is exceeded.

Since the fillet size is the most easily controlled variable in a honeycomb

sandwich bond (one only has to use more adhesive to increase the fillet size), the effect

of this variable on flatwise tensile strength was investigated.

Honeycomb sandwich panels were prepared and tested with varying amounts of

adhesive (ranging from none to 0.73 gm/cm2 ) between the skin and the core. The

individual specimen flatwise tensile strengths obtained from these panels are presented in

Tables N. 1 - N.5. These results were summarized and discussed in Section 3.10.2.
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APPENDIX 0

INDIVIDUAL SPECIMEN HONEYCOMB SANDWICH
EDGEWISE COMPRESSION PROPERTIES, EFFECT OF

COCURING VS. SECONDARY BONDING

The six tables in this appendix present the detailed edgewise compression strength

data for honeycomb sandwich specimens prepared by either cocuring of the skins to the
core or secondarily bonding the skins to the core. The specimens consisted of either
graphite or glass fabric reinforced skins on two different density aluminum honeycomb
cores.

In order to prevent crushing of the ends of the sandwich specimens during
loading, approximately 4.5 cm (1.75 in) of the core on each end of the specimen was
filled with epoxy resin, leaving a central, unpotted, gage section between the loading

fixtures of approximately 14 cm (5.5 in).

Figure 0. 1 illustrates the various failure modes observed for these specimens.
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APPENDIX P

INDIVIDUAL SPECIMEN COMPRESSION PROPERTIES,
EFFECT OF THERMAL PULSE

The 13 tables in this appendix present the detailed compression strength data for

specimens exposed to a thermal pulse. A summary of these data was presented and

discussed in Section 3.12.2.
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APPENDIX Q

INDIVIDUAL SPECIMEN MECHANICAL PROPERTIES,
EFFECT OF SILANE SIZING ON ENVIRONMENTAL DEGRADATION

OF GLASS REINFORCED LAMINATES

The nine tables in this appendix present the detailed mechanical property data for

specimens prepared with silane-sized glass reinforcement. The properties measured on

these laminates included tensile, inplane shear, and interlaminar shear. It will be noted in

Tables Q. I - Q.3 that the tensile specimens failed inside the tab area. Figure Q. I

illustrates the location and nature of these failures. A summary of these data was

presented and discussed in Section 3.11.
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Figure Q.1. Failure Location of Tensile Specimens

That Failed Inside Tab Area.
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APPENDIX R

DETERMINATION OF BLEEDER ABSORPTIVITY

The bleeder materials used in this program may not be available when performing

a repair. If an alternative bleeder material is used, its absorptivity can be determined by

the procedure outlined below. It is suggested that absorptivity be determined by this

procedure for several bleeder/laminate ply ratios that bracket the layup actually used so

that a reliable average value can be determincd. The primary reason that bleeder

absorptivity is of interest is to provide guidance in selecting a bleeder/laminate ply ratio

that will produce the desired final resin content. It must be recognized, however, that not

all resin is removed by the bleeder. Some will be lost around the edges of the layup.

Additionally, the amount absorbed by the bleeder will probably vary if the amount of

excess resin used in the laminate layup or the bleeder/laminate ply ratio varies

significantly from those used in the absorptivity determination.

1. Select Bleeder/Laminate ply ratio.

2. Bleeder plies are to be same size as laminate plies, and should be both weighed
and measured (length x width) prior to layup.

3. Compute area density (gm/r 2 ) of dry bleeder material

wt. of DBPS = area density of DBP(gm / M 2 )
area of DBPS x no. of plies in DBPS

where DBPS = dry bleeder ply stack.

4. Layup and impregnate laminate plies in accordance with standard procedure
described in Appendix A (except for bleeder ply differences if using other than
Mochburg CW 1850).

5. Bag and cure in accordance with the standard procedure described in
Appendix A.

6. After cure, dismantle the bagged layup and separate the impregnated stack of
bleeder plies from the nonporous teflon/glass and the porous teflon/glass sheets.

7. Weigh and remeasure the impregnated bleeder stack.

8. Compute amount of resin absorbed in each unit .area of bleeder

wvt. of IBS = area density of IBS(gm / m 2 )

area of IBS x no. of plies in IBS

where IBS = impregnated bleeder stack.
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area density of IBS - area density of DBPS= area density of resin in bleeder, or absorptivity (g9ri / mn
no.of plies in IBS

9. Compute amount of resin absorbed in each unit weight of bleeder

wt. of IBS- wt. of DBPS
wt. of D--= absorptivity (gin resin / gm bleeder)
wt. of DBPS
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